DITEC - Experimental Analysis of an Image Characterization Method based on the Trace Transform

Igor G. Olaizola, Iñigo Barandiaran, Basilio Sierra, Manuel Graña

Abstract

Global and local image feature extraction is one of the most common tasks in computer vision since they provide the basic information for further processes, and can be employed on several applications such as image search & retrieval, object recognition, 3D reconstruction, augmented reality, etc. The main parameters to evaluate a feature extraction algorithm are its discriminant capability, robustness and invariance behavior to certain transformations. However, other aspects such as computational performance or provided feature length can be crucial for domain specific applications with specific constraints (real-time, massive datasets, etc.). In this paper, we analyze the main characteristics of the DITEC method used both as global and local descriptor method. Our results show that DITEC can be effectively applied in both contexts.

References

  1. Ahmed, S., Khan, M., and Shahjahan, M. (2011). A filter based feature selection approach using lempel ziv complexity. In Liu, D., Zhang, H., Polycarpou, M., Alippi, C., and He, H., editors, Advances in Neural Networks ISNN 2011, volume 6676 of Lecture Notes in Computer Science, pages 260-269. Springer Berlin / Heidelberg. 10.1007/978-3-642-21090-7 31.
  2. Bay, H., Tuytelaars, T., and Gool, L. V. (2006a). Surf: Speeded up robust features. In In ECCV, pages 404- 417.
  3. Bay, H., Tuytelaars, T., and Van Gool, L. (2006b). Surf: Speeded up robust features. Computer Vision-ECCV 2006, pages 404-417.
  4. Bishop, C. M. (2006). Pattern recognition and machine learning. Springer, 1st ed. 2006. corr. 2nd printing edition.
  5. Bober, M. and Oami, R. (2007). Description of mpeg-7 visual core experiments. Technical report, ISO/IEC JTC1/SC29/WG11.
  6. Bouker, M. A. and Hervet, E. (2011). Retrieval of images using mean-shift and gaussian mixtures based on weighted color histograms. In Proc. Seventh Int Signal-Image Technology and Internet-Based Systems (SITIS) Conf, pages 218-222.
  7. Brasnett, P. and Bober, M. (2008). Fast and robust image identification. In Proc. 19th Int. Conf. Pattern Recognition ICPR 2008, pages 1-5.
  8. Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010a). Brief: binary robust independent elementary features. In Proceedings of the 11th European conference on Computer vision: Part IV, ECCV'10, pages 778-792, Berlin, Heidelberg. Springer-Verlag.
  9. Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010b). Brief: Binary robust independent elementary features. Computer Vision-ECCV 2010, pages 778-792.
  10. Cerra, D., Mallet, A., Gueguen, L., and Datcu, M. (2010). Algorithmic information theory-based analysis of earth observation images: An assessment. IEEE J GRSL, 7(1):8-12.
  11. Fahmy, S. A. (2006). Investigating trace transform architectures for face authentication. In Proc. Int. Conf. Field Programmable Logic and Applications FPL 7806, pages 1-2.
  12. Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Mach. Learn., 46:389-422.
  13. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. H. SIGKDD Explor. Newsl., (1).
  14. Kadyrov, A. and Petrou, M. (1998). The trace transform as a tool to invariant feature construction. In Proc. Fourteenth Int Pattern Recognition Conf, volume 2, pages 1037-1039.
  15. Kadyrov, A. and Petrou, M. (2001). The trace transform and its applications. IEEE J PAMI, 23(8):811-828.
  16. Lin, S., Li, S., and Li, C. (2010). A fast electronic components orientation and identify method via radon transform. In Proc. IEEE Int Systems Man and Cybernetics (SMC) Conf, pages 3902-3908.
  17. Liu, N. and Wang, H. (2007). Recognition of human faces using siscrete cosine transform filtered trace features. In Proc. 6th Int Information, Communications & Signal Processing Conf, pages 1-5.
  18. Liu, N. and Wang, H. (2009). Modeling images with multiple trace transforms for pattern analysis. IEEE J SPL, 16(5):394-397.
  19. Lowe, D. G. (1999). Object recognition from local ScaleInvariant features. Computer Vision, IEEE International Conference on, 2:1150-1157 vol.2.
  20. Manjunath, B. S., rainer Ohm, J., Vasudevan, V. V., and Yamada, A. (1998). Color and texture descriptors. IEEE Transactions on Circuits and Systems for Video Technology, 11:703-715.
  21. Martínez, J. M. (2004). Mpeg-7 overview, iso/iec jtc1/sc29/ wg11 http://mpeg.chiariglione.org/standards/mpeg-7/ mpeg-7.htm.
  22. Mikolajczyk, K. and Schmid, C. (2005). A performance evaluation of local descriptors. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27(10):1615-1630.
  23. Nasrudin, M. F., Petrou, M., and Kotoulas, L. (2010). Jawi character recognition using the trace transform. In Proc. Seventh Int Computer Graphics, Imaging and Visualization (CGIV) Conf, pages 151-156.
  24. O'Callaghan, R., Bober, M., and Oami, R. and. Brasnett, P. (2008). Information technology - multimedia content description interface - part 3: Visual, amendment 3: Image signature tools.
  25. Olaizola, I. G., Quartulli, M., Flórez, J., and Sierra, B. (2012). Trace transform based method for color image domain identification. arXiv.
  26. Petrou, M. and Kadyrov, A. (2004). features from the trace transform. 26(1):30-44.
  27. Peyrin, F. and Goutte, R. (1992). Image invariant via the radon transform. In Proc. Int Image Processing and its Applications Conf, pages 458-461.
  28. Seo, J. S., Haitsma, J., Kalker, T., and Yoo, C. D. (2004). A robust image fingerprinting system using the radon transform. Sig. Proc.: Image Comm., 19(4):325-339.
  29. Shechtman, E. and Irani, M. (2007). Matching local self-similarities across images and videos. In Proc. IEEE Conf. Computer Vision and Pattern Recognition CVPR 7807, pages 1-8.
  30. Snoek, C. G. M. and Smeulders, A. W. M. (2010). Visualconcept search solved? Computer, 43(6):76-78.
  31. Srisuk, S., Petrou, M., Kurutach, W., and Kadyrov, A. (2003). Face authentication using the trace transform. In Proc. IEEE Computer Society Conf. Computer Vision and Pattern Recognition, volume 1.
  32. Turan, J., Bojkovic, Z., Filo, P., and Ovsenik, L. (2005). Invariant image recognition experiment with trace transform. In Proc. 7th Int Telecommunications in Modern Satellite, Cable and Broadcasting Services Conf, volume 1, pages 189-192.
  33. Watanabe, T., Sugawara, K., and Sugihara, H. (2002). A new pattern representation scheme using data compression. IEEE J PAMI, 24(5):579-590.
Download


Paper Citation


in Harvard Style

Olaizola I., Barandiaran I., Sierra B. and Graña M. (2013). DITEC - Experimental Analysis of an Image Characterization Method based on the Trace Transform . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 344-352. DOI: 10.5220/0004292303440352


in Bibtex Style

@conference{visapp13,
author={Igor G. Olaizola and Iñigo Barandiaran and Basilio Sierra and Manuel Graña},
title={DITEC - Experimental Analysis of an Image Characterization Method based on the Trace Transform},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={344-352},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004292303440352},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - DITEC - Experimental Analysis of an Image Characterization Method based on the Trace Transform
SN - 978-989-8565-47-1
AU - Olaizola I.
AU - Barandiaran I.
AU - Sierra B.
AU - Graña M.
PY - 2013
SP - 344
EP - 352
DO - 10.5220/0004292303440352