A Pyramid of Concentric Circular Regions to Improve Rotation Invariance in Bag-of-Words Approach for Object Categorization

Arnaldo Câmara Lara, Roberto Hirata Jr.

Abstract

The bag-of-words (BoW) approach has shown to be effective in image categorization. Spatial pyramids in conjunction to the original BoW approach improve overall performance in the categorization process. This work proposes a new way of partitioning an image in concentric circular regions and calculating histograms of codewords for each circular region. The histogram of the entire image is concatenated forming the image descriptor. This slight and simple modification preserves the performance of the original spatial information and adds robustness to image rotation. The pyramid of concentric circular regions showed to be almost 78% more robust to rotation of images in our tests compared to the traditional rectangular spatial pyramids.

References

  1. Bosch, A., Zisserman, A., and Munoz, X. (2007). Image classification using random forests and ferns. In 11th International Conference on Computer Vision, pages 1-8, Rio de Janeiro, Brazil.
  2. Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273.
  3. Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray, C. (2004). Visual categorization with bags of keypoints. In ECCV International Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic.
  4. Cula, G. and Dana, J. (2001). Compact representation of bidirectional texture functions. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages 1041-1047, Kauai, USA. IEEE Computer Society.
  5. Deng, J., Berg, A., Li, K., and Fei-Fei, L. (2010). What does classifying more than 10,000 image categories tell us? Computer Vision-ECCV 2010, pages 71-84.
  6. Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. John Wiley and Sons.
  7. Fei-Fei, L., Fergus, R., and Perona, P. (2006). Oneshot learning of object categories. IEEE Transactions On Pattern Analysis and Machine Intelligence, 28(4):594-611.
  8. Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, pages 2169-2178, New York, USA.
  9. Sivic, J., Russell, R., Efros, A., Zisserman, A., and Freeman, W. (2005). Discovering objects and their location in images. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference on, pages 370- 377, San Diego, USA. IEEE Computer Society.
  10. Szeliski, R. (2011). Computer Vision: Algorithms and Applications. Springer-Verlag.
  11. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., and Gong, Y. (2010). Locality-constrained linear coding for image classification. In Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, pages 3360-3367, San Francisco, USA. IEEE Computer Society.
Download


Paper Citation


in Harvard Style

Câmara Lara A. and Hirata Jr. R. (2013). A Pyramid of Concentric Circular Regions to Improve Rotation Invariance in Bag-of-Words Approach for Object Categorization . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 687-692. DOI: 10.5220/0004298806870692


in Bibtex Style

@conference{visapp13,
author={Arnaldo Câmara Lara and Roberto Hirata Jr.},
title={A Pyramid of Concentric Circular Regions to Improve Rotation Invariance in Bag-of-Words Approach for Object Categorization},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={687-692},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004298806870692},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - A Pyramid of Concentric Circular Regions to Improve Rotation Invariance in Bag-of-Words Approach for Object Categorization
SN - 978-989-8565-47-1
AU - Câmara Lara A.
AU - Hirata Jr. R.
PY - 2013
SP - 687
EP - 692
DO - 10.5220/0004298806870692