Real-time Intelligent Clustering for Graph Visualization

Lionel Martin, Géraldine Bous

Abstract

We present a tool for the interactive exploration and analysis of large clustered graphs. The tool empowers users to control the granularity of the graph, either by direct interaction (collapsing/expanding clusters) or via a slider that automatically computes a clustered graph of the desired size. Moreover, we explore the use of learning algorithms to capture graph exploration preferences based on a history of user interactions. The learned parameters are then used to modify the action of the slider in view of mimicking the natural interaction/exploration behavior of the user.

References

  1. Aleskerov, F., Bouyssou, D., and Monjardet, B. (2007). Utility Maximization, Choice and Preference. Springer, Berlin.
  2. Archanbault, D., Munzner, T., and Auber, D. (2002). Tuggraph: path-preserving hierarchies for browsing proximity and paths in graphs. In Proceedings of IEEE Pacific Visualization Symposium, page 113120.
  3. Archanbault, D., Munzner, T., and Auber, D. (2008). Grouseflocks: Steerable exploration of graph hierarchy space. IEEE Transactions on Visualization and Computer Graphics, 14:900913.
  4. Blondel, V. D., Guillaume, J.-L., Lambiotte, R., and Lefebvre, E. (2008). Fast unfolding of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment, 2008:P10008.
  5. Bous, G., Fortemps, P., Glineur, F., and Pirlot, M. (2010). ACUTA: A novel method for eliciting additive value functions on the basis of holistic preference statements. European Journal of Operational Research, 206:435-444.
  6. Card, S., MacKinlay, J., and Schneiderman, B. (1999). Readings in Information Visualization: Using Vision to Think. Morgan Kaufmann, Burlington.
  7. Duch, J. and Arenas, A. (2005). Community detection in complex networks using extremal optimization. Physical Review E, 72:027104.
  8. Elmqvist, N., Do, T.-N., Goodell, H., Henry, N., and Fekete, J.-D. (2008). Zame: Interactive large-scale graph visualization. In Proceedings of the IEEE Pacific Visualization Symposium, pages 215 -222.
  9. Elmqvist, N. and Fekete, J.-D. (2010). Hierarchical aggregation for information visualization: Overview, techniques and design guidelines. IEEE Transactions on Visualization and Computer Graphics, 16:439-454.
  10. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486:75 - 174.
  11. Ghoniem, M., Fekete, J.-D., and Castagliola, P. (2005). On the readability of graphs using node-link and matrixbased representations: A controlled experiment and statistical analysis. Information Visualization, 4:114- 135.
  12. Girvan, M. and Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences, 99:78217826.
  13. Heer, J. and Boyd, D. (2005). Vizster: visualizing online social networks. In Proceedings of the IEEE Symposium on Information Visualization, page 3239.
  14. Heer, J. and Perer, A. (2011). Orion: A system for modeling, transformation and visualization of multidimensional heterogeneous networks. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pages 51 -60.
  15. Henry, N. and Fekete, J.-D. (2006). Matrixexplorer: a dual-representation system to explore social networks. IEEE Transactions on Visualization and Computer Graphics, 12:677-684.
  16. Henry, N., Fekete, J.-D., and McGuffin, M. (2007). Nodetrix: a hybrid visualization of social networks. IEEE Transactions on Visualization and Computer Graphics, 13(6):1302 -1309.
  17. Jacquet-Lagrèze, E. and Siskos, Y. (1982). Assessing a set of additive utility functions to multicriteria decisionmaking: the UTA method. European Journal of Operational Research, 10:151-164.
  18. Keeney, R. L. and Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. Wiley, New York.
  19. Kernighan, B. W. and Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. Bell System Technical Journal, 49:291307.
  20. Latapy, M., Magnien, C., and Vecchio, N. D. (2008). Basic notions for the analysis of large two-mode networks. Social Networks, 30:31 - 48.
  21. Liu, Z., Navathe, S., and Stasko, J. (2011). Network-based visual analysis of tabular data. In Proceedings of the 2011 IEEE Conference on Visual Analytics Science and Technology (VAST), pages 41 -50.
  22. Mehta, G. B. (1998). Preference and utility. In Barberà, S., Hammond, P. J., and Seidl, C., editors, Handbook of Utility Theory, volume 1, pages 1-47. Kluwer, Dordrecht.
  23. Newman, M. (2004). Detecting community structure in networks. The European Physical Journal B - Condensed Matter and Complex Systems, 38:321-330.
  24. Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69:026113.
  25. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., and Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences, 101:2658-2663.
  26. Shneiderman, B. and Aris, A. (2006). Network visualization by semantic substrates. IEEE Transactions on Visualization and Computer Graphics, 12:733 -740.
  27. Siskos, Y., Grigoroudis, E., and Matsatsinis, N. (2005). UTA methods. In Figueira, J., Greco, S., and Ehrgott, M., editors, Multiple Criteria Decision Analysis: State of the Art Surveys, pages 297-344. Springer, Berlin.
  28. Siskos, Y. and Yannacopoulos, D. (1985). UTASTAR: an ordinal regression method for building additive value functions. Investigaao Operacional, 5:39-53.
  29. Suaris, P. R. and Kedem, G. (1988). An algorithm for quadrisection and its application to standard cell placement. IEEE Transactions on Circuits and Systems, 35:294-303.
  30. van Ham, F. and Perer, A. (2009). Search, show context, expand on demand: supporting large graph exploration with degree-of-interest. IEEE Transactions on Visualization and Computer Graphics, 15:953960.
  31. von Landesberger, T., Kuijper, A., Schreck, T., Kohlhammer, J., van Wijk, J. J., Fekete, J.-D., and Fellner, D. W. (2011). Visual analysis of large graphs: Stateof-the-art and future research challenges. Computer Graphics Forum, 30:17191749.
  32. Wattenberg, M. (2006). Visual exploration of multivariate graphs. In Proceedings of the SIGCHI conference on Human Factors in computing systems, pages 811-819.
  33. Wu, A. Y., Garland, M., and Han, J. (2004). Mining scalefree networks using geodesic clustering. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 719-724.
Download


Paper Citation


in Harvard Style

Martin L. and Bous G. (2013). Real-time Intelligent Clustering for Graph Visualization . In Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013) ISBN 978-989-8565-46-4, pages 471-480. DOI: 10.5220/0004305504710480


in Bibtex Style

@conference{ivapp13,
author={Lionel Martin and Géraldine Bous},
title={Real-time Intelligent Clustering for Graph Visualization},
booktitle={Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)},
year={2013},
pages={471-480},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004305504710480},
isbn={978-989-8565-46-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Graphics Theory and Applications and International Conference on Information Visualization Theory and Applications - Volume 1: IVAPP, (VISIGRAPP 2013)
TI - Real-time Intelligent Clustering for Graph Visualization
SN - 978-989-8565-46-4
AU - Martin L.
AU - Bous G.
PY - 2013
SP - 471
EP - 480
DO - 10.5220/0004305504710480