Towards a Meta-model of the Cloud Computing Resource Landscape

Kleopatra Chatziprimou, Kevin Lano, Steffen Zschaler

Abstract

As Cloud Computing becomes more predominant, large scale datacenters are subject to an increasing demand for efficiency and flexibility. However, growing infrastructure management complexity and maintenance costs are becoming a hindrance to the advancement of the Cloud vision. In this paper we discuss how existing datacenter resource management approaches fail to provide infrastructure elasticity and suggest a resources provisioning architecture to fill this gap. As a first step towards implementing our targets, we present a metamodel to describe the characteristics of the Cloud landscape, emphasising on a provider’s perspective. With this meta-model we intend to introduce new modelling concepts towards facilitating the selection of optimal reconfigurations in a timely fashion.

References

  1. Abdelzaher, T., Shin, K. G., and Bhatti, N. (2001). Performance Guarantees for Web Server End-Systems: A Control-Theoretical Approach. IEEE Transactions on Parallel and Distributed Systems.
  2. Becker, S., Koziolek, H., and Reussner, R. (2009). The Palladio component model for model-driven performance prediction. J. Syst. Softw.
  3. Chuen, C., Mark, T., Niyato, D., and Chen-khong, T. (2011). Evolutionary Optimal Virtual Machine Placement and Demand Forecaster for Cloud Computing. International Conference on Advanced Information Networking and Applications.
  4. David Breitgand, Alessandro Maraschini, J. T. (2011). Policy-Driven Service Placement Optimization in Federated Clouds. Technical report, IBM Research.
  5. Ferreto, T. C., Netto, M. A. S., Calheiros, R. N., and De Rose, C. A. F. (2011). Server consolidation with migration control for virtualized data centers. Future Generation Computer Systems.
  6. Huber, N., Brosig, F., and Kounev, S. (2012). Modeling dynamic virtualized resource landscapes. In ACM SIGSOFT.
  7. Josyula, Orr, P. (2012). Cloud Computing: Automating the Virtualized Data Center.
  8. Khanna, G., Beaty, K., Kar, G., and Kochut, A. (2006). Application Performance Management in Virtualized Server Environments. In NOMS 2006, pages 373-381.
  9. Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., and Jiang, G. (2008). Power and performance management of virtualized computing environments via lookahead control. Cluster Computing.
  10. Meng, X., Isci, C., Kephart, J., Zhang, L., Bouillet, E., and Pendarakis, D. (2010a). Efficient resource provisioning in compute clouds via VM multiplexing. In 7th international conference on Autonomic computing.
  11. Meng, X., Pappas, V., and Zhang, L. (2010b). Improving the scalability of data center networks with trafficaware virtual machine placement. In 29th conference on Information communications.
  12. Piao, J. T. and Yan, J. (2010). A Network-aware Virtual Machine Placement and Migration Approach in Cloud Computing. In 9th International Conference on GCC, pages 87 -92.
  13. Shrivastava, V., Zerfos, P., Lee, K.-w., Jamjoom, H., Liu, Y.- h., and Banerjee, S. (2011). Application-aware virtual machine migration in data centers. IEEE INFOCOM.
  14. Stage, A. and Setzer, T. (2009). Network-aware migration control and scheduling of differentiated virtual machine workloads. In ICSE Workshop.
  15. Tesauro, G., Jong, N., Das, R., and Bennani, M. (2006). A Hybrid Reinforcement Learning Approach to Autonomic Resource Allocation. In ICAC 7806.
Download


Paper Citation


in Harvard Style

Chatziprimou K., Lano K. and Zschaler S. (2013). Towards a Meta-model of the Cloud Computing Resource Landscape . In Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD, ISBN 978-989-8565-42-6, pages 111-116. DOI: 10.5220/0004311001110116


in Bibtex Style

@conference{modelsward13,
author={Kleopatra Chatziprimou and Kevin Lano and Steffen Zschaler},
title={Towards a Meta-model of the Cloud Computing Resource Landscape},
booktitle={Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,},
year={2013},
pages={111-116},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004311001110116},
isbn={978-989-8565-42-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 1st International Conference on Model-Driven Engineering and Software Development - Volume 1: MODELSWARD,
TI - Towards a Meta-model of the Cloud Computing Resource Landscape
SN - 978-989-8565-42-6
AU - Chatziprimou K.
AU - Lano K.
AU - Zschaler S.
PY - 2013
SP - 111
EP - 116
DO - 10.5220/0004311001110116