RqPCRAnalysis: Analysis of Quantitative Real-time PCR Data

Frédérique Hilliou, Trang tran

Abstract

We propose the statistical RqPCRAnalysis tool for quantitative real-time PCR data analysis which includes the use of several normalization genes, biological as well as technical replicates and provides statistically validated results. This RqPCRAnalysis tool improved methods developed by Genorm and qBASE programs. The algorithm was developed in R language and is freely available. The main contributions of RqPCRAnalysis tool are: (1) determining the most stable reference genes (REF)--housekeeping genes--across biological replicates and technical replicates; (2) computing the normalization factor based on REF; (3) computing the normalized expression of the genes of interest (GOI), as well as rescaling the normalized expression across biological replicates; (4) comparing the level expression between samples across biological replicates via the test of statistical significance. In this paper we describe and demonstrate the available statistical functions for practical analysis of quantitative real-time PCR data. Our statistical RqPCRAnalysis tool is user-friendly and should help biologist with no prior formation in R programming to analyze their quantitative PCR data.

References

  1. Brun-Barale, A., Héma, O., Martin, T., Suraporn, S., Audant, P., Sezutsu, H., Feyereisen, R., 2010 Multiple P450 genes overexpressed in deltamethrin-resistant strains of Helicoverpa armigera, Pest Management Science, 66: 900-909.
  2. Bustin, S. A., 2002. Quantification of mRNA using real time reverse transcription PCR ( RT-PCR): trends and problems. Journal of Molecular Endocrinology, 29: 23-39.
  3. Bustin, S. A., 2004. A-Z of Quantitative PCR. La Jolla California: International University Line.
  4. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J. and Wittwer, C. T., 2009. The MIQE Guidelines: Minimum Information for Publication of Quantitative Real-Time PCR Experiments. Clinical Chemistry, 55 (4): 611- 622.
  5. Bustin, S. A., Beaulieu, J.-F., Huggett, J., Jaggi, R., Kibenge, F., Olsvik, P., Penning, L. and Toegel, S., 2010. MIQE precis: Practical implementation of minimum standard guidelines for fluorescence-based quantitative real-time PCR experiments. BMC Molecular Biology, 11 (74).
  6. Czechowski, T., Bari, R.P., Stitt, M., Scheible, W.-R. and Udvardi, M.K., 2004. Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes. Plant Journal, 38: 366-379.
  7. del Giudice, J., Cam, Y., Damiani, I., Fung-Chat, F., Meilhoc, E., Bruand, C., Brouquisse, R., Puppo, A. and Boscari, A., 2011. Nitric oxide is required for an optimal establishment of the Medicago truncatulaSinorhizobium meliloti symbiosis. New Phytologist, 190.
  8. Giraudo, M., Califano, J., Hilliou, F., Tran, T., Taquet, N., Feyereisen, René, Le Goff, G., 2011. Effects of Hormone Agonists on Sf9 Cells, Proliferation and Cell Cycle Arrest. PLoS ONE, 6, 10, e25708.
  9. Dvinge, H. and Bertone, P., 2009. HTqPCR: Highthroughput analysis and visualization of quantitative real-time PCRdata in R. Bioinformatics, 25, 3325- 3326.
  10. Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. and Vandesompele, J., 2007. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biology , 8 (2):R19.
  11. Pabinger, S., Thallinger, G., Snajder, R., Eichhorn, H., Rader, R. and Trajanoski, Z., 2009. QPCR: Application for real-time PCR data management and analysis. BMC Bioinformatic, 10, 268.
  12. Park, J.-H., Halitschke, R., Kim, H. B., Baldwin, I. T., Feldmann, K.A. and Feyereisen, R., 2002. A knockout mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis. Plant Journal, 31: 1-12.
  13. Vandesompele, J., De Preter, K., Pattyn, F., Poppe, B., Van Roy, N., De Paepe, A. and Speleman, F., 2002. Accurate normalization of real-time quantitative RTPCR data by geometric averaging of multiple internal control genes. Genome Biology, 3.
Download


Paper Citation


in Harvard Style

Hilliou F. and tran T. (2013). RqPCRAnalysis: Analysis of Quantitative Real-time PCR Data . In Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013) ISBN 978-989-8565-35-8, pages 202-211. DOI: 10.5220/0004312002020211


in Bibtex Style

@conference{bioinformatics13,
author={Frédérique Hilliou and Trang tran},
title={RqPCRAnalysis: Analysis of Quantitative Real-time PCR Data},
booktitle={Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)},
year={2013},
pages={202-211},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004312002020211},
isbn={978-989-8565-35-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bioinformatics Models, Methods and Algorithms - Volume 1: BIOINFORMATICS, (BIOSTEC 2013)
TI - RqPCRAnalysis: Analysis of Quantitative Real-time PCR Data
SN - 978-989-8565-35-8
AU - Hilliou F.
AU - tran T.
PY - 2013
SP - 202
EP - 211
DO - 10.5220/0004312002020211