Finger Joint Characterization from X-Ray Images for Rheumatoid Arthritis Assessment

Joan M. Núñez, Débora Gil, Fernando Vilariño

Abstract

In this study we propose amodular systemfor automatic rheumatoid arthritis assessment which provides a joint space width measure. A hand joint model is proposed based on the accurate analysis of a X-ray finger joint image sample set. This model shows that the sclerosis and the lower bone are the main necessary features in order to perform a proper finger joint characterization. We propose sclerosis and lower bone detection methods as well as the experimental setup necessary for its performance assessment. Our characterization is used to propose and compute a joint space width score which is shown to be related to the different degrees of arthritis. This assertion is verified by comparing our proposed score with Sharp Van der Heijde score, confirming that the lower our score is the more advanced is the patient affection.

References

  1. Bielecki, A., Korkosz, M., and Zielinski, B. (2008). Hand radiographs preprocessing, image representation in the finger regions and joint space width measurements for image interpretation. PRn, 41(12):3786-3798.
  2. Canny, J. (1986). A computational approach to edge detection. PAMI, (6):679-698.
  3. Gil, D., Hernàndez-Sabaté, A., Burnat, M., Jansen, S., and Martínez-Villalta, J. (2009). Structure-preserving smoothing of biomedical images. In Computer Analysis of Images and Patterns, pages 427-434. Springer.
  4. Langs, G., Peloschek, P., Bischof, H., and Kainberger, F. (2009). Automatic quantification of joint space narrowing and erosions in rheumatoid arthritis. Medical Imaging, IEEE Transactions on, 28(1):151-164.
  5. Nún˜ez, J., F., V., and D., G. (2011). Computer vision techniques for characterization of finger joints in x-ray images. Technical report, Centre de Visi ó per Computador.
  6. Rosset, A., Spadola, L., and Ratib, O. (2004). Osirix: An open-source software for navigating in multidimensional dicom images. Journal of Digital Imaging, 17:205-216. 10.1007/s10278-004-1014-6.
  7. Van der Heijde, D. (1999). How to read radiographs according to the sharp/van der heijde radiological assessment in rheumatoid arthritis in long term studies. Journal of Rheumatology, (26):743-745.
  8. Vera, S. (2010). Finger joint modelling from hand x-ray images for assessing rheumatoid arthritis. Technical report, Centre de Visi ó per Computador.
Download


Paper Citation


in Harvard Style

Núñez J., Gil D. and Vilariño F. (2013). Finger Joint Characterization from X-Ray Images for Rheumatoid Arthritis Assessment . In Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013) ISBN 978-989-8565-34-1, pages 288-292. DOI: 10.5220/0004327302880292


in Bibtex Style

@conference{biodevices13,
author={Joan M. Núñez and Débora Gil and Fernando Vilariño},
title={Finger Joint Characterization from X-Ray Images for Rheumatoid Arthritis Assessment},
booktitle={Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)},
year={2013},
pages={288-292},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004327302880292},
isbn={978-989-8565-34-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Biomedical Electronics and Devices - Volume 1: BIODEVICES, (BIOSTEC 2013)
TI - Finger Joint Characterization from X-Ray Images for Rheumatoid Arthritis Assessment
SN - 978-989-8565-34-1
AU - Núñez J.
AU - Gil D.
AU - Vilariño F.
PY - 2013
SP - 288
EP - 292
DO - 10.5220/0004327302880292