Smoothing Parameters Selection for Dimensionality Reduction Method based on Probabilistic Distance - Application to Handwritten Recognition

Faycel El Ayeb, Faouzi Ghorbel

Abstract

Here, we intend to give a rule for the choice of the smoothing parameter of the orthogonal estimate of Patrick-Fisher distance in the sense of the Mean Integrate Square Error. The orthogonal series density estimate precision depends strongly on the choice of such parameter which corresponds to the number of terms in the series expansion used. By using series of random simulations, we illustrate the better performance of its dimensionality reduction in the mean of the misclassification rate. We show also its better behavior for real data. Different invariant shape descriptors describing handwritten digits are extracted from a large database. It serves to compare the proposed adjusted Patrick-Fisher distance estimator with a conventional feature selection method in the mean of the probability error of classification.

References

  1. Aladjem, M. (1997). Linear discriminant analysis for two classes via removal of classification structure. In In IEEE PAMI.
  2. Atkinson, K. (1989). An Introduction to Numerical Analysis. John Wiley and Sons.
  3. Beauville, J. P. A. (1978). Estimation non paramtrique de la densit et du mode exemple de la distribution gamma. In In Revue de Statistique Applique.
  4. Cencov, N. N. and Nauk, D. Z. (1962). Estimation of an unknown density function from observations. In In SSSR.
  5. Crimmins, T. (1982). A complete set of fourier descriptors for two-dimensional shapes. In In IEEE Trans. Syst.
  6. Drira, W. and Ghorbel, F. (2012). Dimension reduction by an orthogonal series estimate of the probabilistic dependence measure. In ICPRAM'12, Int. Conf. on Pattern Recognition Applications and Methods, Portugal.
  7. Fukunaga, K. (1990). Introduction to Statistical Pattern Classification. Academic Press, New York.
  8. Ghorbel, F. (2011). Vers une approche mathmatique unifie des aspects gomtrique et statistiques de la reconnaissance des formes planes. arts-pi, Tunisie.
  9. Ghorbel, F. and Bougrenet, J. T. (1990). Automatic control of lamellibranch larva growth using contour invariant feature extraction. In Pattern Recognition.
  10. Ghorbel, F., Derrode, S., and Alata, O. (2012). Rcentes avances en reconnaissance de formes statistique. artspi, Tunisie.
  11. Hall, P. (1982). Comparison of two orthogonal series methods of estimating a density and its derivatives on an interval. In In Journal of Multivariate Analysis.
  12. Hillion, A., Masson, P., and Roux, C. (1988). Une mthode de classification de textures par extraction linaire non paramtrique de caractristiques. In In Colloque TIPI.
  13. Kronmal, R. and Tarter, M. (1968). The estimation of probability densities and cumulatives by fourier series methods. In In JASA, Journal of the American Statistical Association.
  14. Patrick, E. A. and Fisher, F. P. (1969). Non parametric feature selection. In In IEEE Trans. Information Theory.
  15. Wong, K. W. and Wang, W. (2005). Adaptive density estimation using an orthogonal series for global illumination. In In Computers and Graphics.
Download


Paper Citation


in Harvard Style

El Ayeb F. and Ghorbel F. (2013). Smoothing Parameters Selection for Dimensionality Reduction Method based on Probabilistic Distance - Application to Handwritten Recognition . In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8565-41-9, pages 325-330. DOI: 10.5220/0004333503250330


in Bibtex Style

@conference{icpram13,
author={Faycel El Ayeb and Faouzi Ghorbel},
title={Smoothing Parameters Selection for Dimensionality Reduction Method based on Probabilistic Distance - Application to Handwritten Recognition},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2013},
pages={325-330},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004333503250330},
isbn={978-989-8565-41-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Smoothing Parameters Selection for Dimensionality Reduction Method based on Probabilistic Distance - Application to Handwritten Recognition
SN - 978-989-8565-41-9
AU - El Ayeb F.
AU - Ghorbel F.
PY - 2013
SP - 325
EP - 330
DO - 10.5220/0004333503250330