Rotated Local Binary Pattern (RLBP) - Rotation Invariant Texture Descriptor

Rakesh Mehta, Karen Egiazarian

Abstract

In this paper we propose two novel rotation invariant local texture descriptors. They are based on Local Binary Pattern (LBP), which is one of the most effective and frequently used texture descriptor. Although LBP efficiently captures the local structure, it is not rotation invariant. In the proposed methods, a dominant direction is evaluated in a circular neighbourhood and the descriptor is computed with respect to it. The weights associated with the neighbouring pixels are circularly shifted with respect to this dominant direction. Further, in the second descriptor, the uniformity of the patterns is utilized to extract more discriminative information. The proposed methods are tested for the task of texture classification and the performance is compared with original LBP and its existed extensions.

References

  1. Guo, Z., Zhang, L., and Zhang, D. (2010a). A completed modeling of local binary pattern operator for texture classification. Image Processing, IEEE Transactions on, 19(6):1657-1663.
  2. Guo, Z., Zhang, L., and Zhang, D. (2010b). Rotation invariant texture classification using lbp variance (lbpv) with global matching. Pattern Recognition, 43(3):706-719.
  3. Haralick, R. (1979). Statistical and structural approaches to texture. Proceedings of the IEEE, 67(5):786-804.
  4. Li, Z., Liu, G., Yang, Y., and You, J. (2012). Scaleand rotation-invariant local binary pattern using scale-adaptive texton and subuniform-based circular shift. Image Processing, IEEE Transactions on, 21(4):2130-2140.
  5. Ling, H. and Soatto, S. (2007). Proximity distribution kernels for geometric context in category recognition. In IEEE ICCV., pages 1-8.
  6. Ojala, T., Pietikainen, M., and Maenpaa, T. (2002). Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE TPAMI, 24(7):971 -987.
  7. Salas, S. and Hille, E. (1978). Calculus: One and Several Variable. John Wiley and Sons, New York.
  8. Xu, Y., Ji, H., and Fermüller, C. (2009). Viewpoint invariant texture description using fractal analysis. IJCV, 83(1):85-100.
  9. Zhao, G., Ahonen, T., Matas, J., and Pietikainen, M. (2012). Rotation-invariant image and video description with local binary pattern features. Image Processing, IEEE Transactions on, 21(4):1465 -1477.
Download


Paper Citation


in Harvard Style

Mehta R. and Egiazarian K. (2013). Rotated Local Binary Pattern (RLBP) - Rotation Invariant Texture Descriptor . In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM, ISBN 978-989-8565-41-9, pages 497-502. DOI: 10.5220/0004334304970502


in Bibtex Style

@conference{icpram13,
author={Rakesh Mehta and Karen Egiazarian},
title={Rotated Local Binary Pattern (RLBP) - Rotation Invariant Texture Descriptor},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,},
year={2013},
pages={497-502},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004334304970502},
isbn={978-989-8565-41-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: ICPRAM,
TI - Rotated Local Binary Pattern (RLBP) - Rotation Invariant Texture Descriptor
SN - 978-989-8565-41-9
AU - Mehta R.
AU - Egiazarian K.
PY - 2013
SP - 497
EP - 502
DO - 10.5220/0004334304970502