Near Infrared Broadband Emission and Spectroscopic Properties of Tm3+/Nd3+ Codoped Optical Fiber

Lin Htein, Pramod R. Watekar, Weiwei Fan, Seongmin Ju, Bok Hyeon Kim, Won-Taek Han


The emission bands at 934, 1083, 1279, 1362, 1414 and 1720 nm were found to appear from the Tm3+/Nd3+ codoped optical fiber upon excitation at 633 nm. Near infrared emissions of Tm3+ at 1279, 1414 and 1720 nm confirmed a very efficient energy transfer (ET) between Tm3+ and Nd3+ ions. Since the emission band of Nd3+ at 1362 nm helped to bridge the wavelength gap between the emission peaks of Tm3+ at 1279 and 1414 nm, the ET process made the Tm3+/Nd3+ codoped fiber applicable in broadband fiber laser operating around 1215–1515 nm. Further, cross-sections for the respective bands, spectroscopic properties and nonlinear characteristics of the Tm3+/Nd3+ codoped fiber were investigated.


  1. Aull, B. & Jenssen, H., 1982. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron., vol. 18, no. 5, pp. 925-930.
  2. Balda, R. et al., 2008. Spectroscopic properties of the 1.4 µm emission of Tm3+ ions in TeO2-WO3-PbO glasses. Opt. Express, vol. 16, no. 16, pp. 11836-11846.
  3. Binnemans, K., Deun, R. V., Gorller-Walrand, C. & Adam, J.L., 1998. Optical properties of Nd3+-doped fluorophosphate glasses. J. Alloy. Compd., vol. 275- 277, pp. 455-460.
  4. Boling, N. L. & Glass, A. J., 1978. Empirical relationships for predicting nonlinear refractive index changes in optical solids. IEEE J. Quantum Electron., vol. 14, no. 8, pp. 601-608.
  5. Brandão, M. J. S. et al., 2006. Optical properties and energy transfer processes in (Tm3+, Nd3+) doped tungstate fluorophosphate glass. J. Appl. Phys., vol. 99, no. 11, p. 113525.
  6. Carnall, W. T., Fields, P. R. & Rajnak, K., 1968. Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, EU3+, Gd3+, Tb3+, Dy3+ and Ho3+. J. Chem. Phys., vol. 49, no. 10, pp. 4412-4423.
  7. Choi, J. H. et al., 2003. Optical absorption and emission properties of Nd3+ doped fluorophosphates glass for broadband fiber amplifier applications. Proc. SPIE, vol. 4974, pp. 106-111.
  8. Chung, W. J. & Heo, J., 2001. Energy transfer process for the blue up-conversion in calcium aluminate glasses doped with Tm3+ and Nd3+. J. Am. Ceram. Soc., vol. 84, no. 2, pp. 384-352.
  9. Chung, W. J., Yoo, J. R., Kim, Y. S. & Heo, J., 1997. Mechanism of the blue up-conversion in Tm3+/Nd3+- doped calcium aluminate glasses. J. Am. Ceram. Soc., vol. 80, no. 6, pp. 1485-1490.
  10. Fowler, W. B. & Dexter, D. L., 1962. Relation between absorption and emission probabilities in luminescent centers in ionic solids. Phys. Rev., vol. 128, pp. 2154- 2165.
  11. Digonnet, M. J. F. (ed.), 1993. Rare-earth-doped fiber lasers and amplifiers. Marcel Dekker, Inc.
  12. Han, W.-T. & Kim, Y. H., 2002. Linear and nonlinear optical properties of optical fibers containing PbTe quantum dots for all optical switching application. 2nd Int. China-Korea Glass and Glass-Ceramics Symp., Shanghi.
  13. Heo, J., Cho, W. Y. & Chung, W. J., 1997. Sensitizing effect of Tm3+ on 2.9 µm emission from Dy3+-doped Ge25 Ga5 S70 glass. J. Non-Cryst. Solids, vol. 212, pp. 151-156.
  14. Judd, B. R., 1962. Optical absorption intensities of rareearth ions. Phy. Rev., vol. 127, pp. 750-761.
  15. Kobayashi, S., Shibata, N., Shibata, S. & Izawa, T., 1978. Characteristics of optical fibers in infrared wavelength region. Review of ECL, vol. 26, no. 3, pp. 453-467.
  16. Kobayashi, S., Shibata, S., Shibata, N. & Izawa, T., 1977. Refractive-index dispersion of doped fused silica. 1stInternational Conference on Integrated Optics and Optical Fiber Communication (IECE), Tokyo.
  17. Krupke, W. F., 1974. Induced-emission cross sections in neodymium laser glasses. IEEE J. Quantum Electron., vol. QE-10, no. 4, pp. 450-457.
  18. Lahoz, F., Shepherd, D. P., Wilkinson, J. S. & Hassan, M. A., 2008. Efficient blue upconversion emission due to confined radiative energy transfer in Tm3+-Nd3+ codoped Ta2O5 waveguides under infrared-laser excitation. Opt. Commun., vol. 281, pp. 3691-3694.
  19. Lee, D. J., Heo, J. & Park, S. H., 2003. Energy transfer and 1.48 µm emission properties in chalcohalide glasses doped with Tm3+ and Tb3+. J. Non-Cryst. Solids, vol. 331, pp. 181-189.
  20. Lucas, J. et al., 1978. Preparation and optical properties of neodymium fluorozirconate glasses. J. Non-Cryst. Solids, vol. 27, pp. 273-283.
  21. Lu, K. & Dutta, N. K., 2001. Spectroscopic properties of Nd-doped glass for 944 nm laser emission. J. Appl. Phys., vol. 89, no. 6, pp. 3079-3083.
  22. Martinez, A., Zenteno, L. A. & Kuo, J. C. K., 1998. Optical and spectroscopic characterization of Nddoped aluminosilicate fiber preforms made by the MCVD method using chelate delivery. Appl. Phys. B, vol. 67, pp. 17-21.
  23. Milam, D. & Weber, M. J., 1976. Measurement of nonlinear refractive-index coefficients using timeresolved interferometry: application to optical materials for high-power neodymium lasers. J. Appl. Phys., vol. 47, pp. 2497-2501.
  24. Peterka, P. et al., 2004. Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Opt. Quant. Electron., vol. 36, pp. 201-212.
  25. Quimby, R. S. & Miniscalco, W. J., 1989. Continuouswave lasing on a self-terminating transition. Appl. Opt., vol. 28, no. 1, pp. 14-16.
  26. Rakov, N., Gómez, L. A., Rátiva, D. J. & Maciel, G. S., 2002. Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions. J. Appl. Phys., vol. 92, no. 10, pp. 6337- 6339.
  27. Rakov, N., Gómez, L. A., Rátiva, D. J. & Maciel, G. S., 2009. Blue upconversion emission from Tm3+ sensitized by Nd3+ in aluminum oxide crystalline ceramic powders. Appl. Phys. B, vol. 94, pp. 199-202.
  28. Shen, S. et al., 2002. Tellurite glasses for broadband amplifiers and integrated optics. J. Am. Ceram. Soc., vol. 85, no. 6, pp. 1391-1395.
  29. Stokowski, S. E., Saroyan, R. A. & Weber, M. J., 1981. Nd-doped laser glass spectroscopic and physical properties. Lawrence Livermore National Laboratory, M-095, Rev. 2, 1.
  30. Tanabe, S., 2002. Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C. R. Chim., vol. 5, no. 5, pp. 815-824.
  31. Tanabe, S., Feng, X. & Hanada, T., 2000. Improved emission of Tm3+ doped glass for a 1.4-µm amplifier by radiative energy transfer between Tm3+ and Nd3+. Opt. Lett., vol. 25, no. 11, pp. 817-819.
  32. Thomas, I. M., Payne, S. A. & Wilke, G. D., 1992. Optical properties and laser demonstrations of Nd-doped solgel silica glasses. J. Non-Cryst. Solids, vol. 151, no. 3, pp. 183-194.
  33. Walsh, B. M. & Barnes, N. P., 2004. Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 µm. Appl. Phys. B, vol. 78, pp. 325-333.
  34. Watekar, P. R., Ju, S., Boo, S. & Han, W.-T., 2005. Linear and non-linear optical properties of Yb3+/Tm3+ codoped alumino-silicate glass prepared by sol-gel method. J. Non-Cryst. Solids, vol. 351, pp. 2446-2452.
  35. Watekar, P. R., Ju, S. & Han, W.-T., 2006. A small-signal power model for Tm-doped silica-glass optical fiber amplifier. IEEE Photon. Technol. Lett., vol. 18, no. 19, pp. 2035-2037.
  36. Weber, M. J., Lynch, J. E., Blackburn, D. H. & Cronin, D. J., 1983. Dependence of the stimulated emission cross section of Yb3+ on host glass composition. IEEE J. Quantum Electron., vol. 19, pp. 1600-1608.
  37. Yanbo, Q. et al., 2006. Spectroscopic properties of Nd3+- doped high silica glass prepared by sintering porous glass. J. Rare Earth., vol. 24, pp. 765-770.
  38. Yang, Z., Luo, L. & Chen, W., 2006. The 1.23 and 1.47 µm emissions from Tm3+ in chalcogenide glasses. J. Appl. Phys., vol. 99, no. 7, pp. 076107-3.
  39. Zabicky, J. (ed.), 2009. The chemistry of metal enolates, part 1. John Wiley & Sons Ltd.
  40. Zhang, J., Chung, W. J., Zhao, X. & Heo, J., 2010. Nd3+ sensitized blue upconversion luminescence in Nd3+/Pr3+ co-doped Ge-Ga-S-CsBr chalcohalide glasses. J. Non-Cryst. Solids, vol. 356, pp. 2406-2408.
  41. Zhang, J. W. et al., 2006. Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics. Appl. Phys. Lett., vol. 89, pp. 061113.
  42. Zhou, B., Lin, H. & Pun, E.Y.-B., 2010. Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region. Opt. Express, vol. 18, no.18, pp. 18805-18810.
  43. Zou, X. & Toratani, H., 1996. Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses. J. Non-Cryst. Solids, vol. 195, pp. 113-124.

Paper Citation

in Harvard Style

Htein L., R. Watekar P., Fan W., Ju S., Hyeon Kim B. and Han W. (2013). Near Infrared Broadband Emission and Spectroscopic Properties of Tm3+/Nd3+ Codoped Optical Fiber . In Proceedings of the International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-8565-44-0, pages 25-32. DOI: 10.5220/0004338200250032

in Bibtex Style

author={Lin Htein and Pramod R. Watekar and Weiwei Fan and Seongmin Ju and Bok Hyeon Kim and Won-Taek Han},
title={Near Infrared Broadband Emission and Spectroscopic Properties of Tm3+/Nd3+ Codoped Optical Fiber},
booktitle={Proceedings of the International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},

in EndNote Style

JO - Proceedings of the International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Near Infrared Broadband Emission and Spectroscopic Properties of Tm3+/Nd3+ Codoped Optical Fiber
SN - 978-989-8565-44-0
AU - Htein L.
AU - R. Watekar P.
AU - Fan W.
AU - Ju S.
AU - Hyeon Kim B.
AU - Han W.
PY - 2013
SP - 25
EP - 32
DO - 10.5220/0004338200250032