Near Infrared Broadband Emission and Spectroscopic Properties of Tm3+/Nd3+ Codoped Optical Fiber

Lin Htein, Pramod R. Watekar, Weiwei Fan, Seongmin Ju, Bok Hyeon Kim, Won-Taek Han

Abstract

The emission bands at 934, 1083, 1279, 1362, 1414 and 1720 nm were found to appear from the Tm3+/Nd3+ codoped optical fiber upon excitation at 633 nm. Near infrared emissions of Tm3+ at 1279, 1414 and 1720 nm confirmed a very efficient energy transfer (ET) between Tm3+ and Nd3+ ions. Since the emission band of Nd3+ at 1362 nm helped to bridge the wavelength gap between the emission peaks of Tm3+ at 1279 and 1414 nm, the ET process made the Tm3+/Nd3+ codoped fiber applicable in broadband fiber laser operating around 1215–1515 nm. Further, cross-sections for the respective bands, spectroscopic properties and nonlinear characteristics of the Tm3+/Nd3+ codoped fiber were investigated.

References

  1. Aull, B. & Jenssen, H., 1982. Vibronic interactions in Nd:YAG resulting in nonreciprocity of absorption and stimulated emission cross sections. IEEE J. Quantum Electron., vol. 18, no. 5, pp. 925-930.
  2. Balda, R. et al., 2008. Spectroscopic properties of the 1.4 µm emission of Tm3+ ions in TeO2-WO3-PbO glasses. Opt. Express, vol. 16, no. 16, pp. 11836-11846.
  3. Binnemans, K., Deun, R. V., Gorller-Walrand, C. & Adam, J.L., 1998. Optical properties of Nd3+-doped fluorophosphate glasses. J. Alloy. Compd., vol. 275- 277, pp. 455-460.
  4. Boling, N. L. & Glass, A. J., 1978. Empirical relationships for predicting nonlinear refractive index changes in optical solids. IEEE J. Quantum Electron., vol. 14, no. 8, pp. 601-608.
  5. Brandão, M. J. S. et al., 2006. Optical properties and energy transfer processes in (Tm3+, Nd3+) doped tungstate fluorophosphate glass. J. Appl. Phys., vol. 99, no. 11, p. 113525.
  6. Carnall, W. T., Fields, P. R. & Rajnak, K., 1968. Spectral intensities of the trivalent lanthanides and actinides in solution. II. Pm3+, Sm3+, EU3+, Gd3+, Tb3+, Dy3+ and Ho3+. J. Chem. Phys., vol. 49, no. 10, pp. 4412-4423.
  7. Choi, J. H. et al., 2003. Optical absorption and emission properties of Nd3+ doped fluorophosphates glass for broadband fiber amplifier applications. Proc. SPIE, vol. 4974, pp. 106-111.
  8. Chung, W. J. & Heo, J., 2001. Energy transfer process for the blue up-conversion in calcium aluminate glasses doped with Tm3+ and Nd3+. J. Am. Ceram. Soc., vol. 84, no. 2, pp. 384-352.
  9. Chung, W. J., Yoo, J. R., Kim, Y. S. & Heo, J., 1997. Mechanism of the blue up-conversion in Tm3+/Nd3+- doped calcium aluminate glasses. J. Am. Ceram. Soc., vol. 80, no. 6, pp. 1485-1490.
  10. Fowler, W. B. & Dexter, D. L., 1962. Relation between absorption and emission probabilities in luminescent centers in ionic solids. Phys. Rev., vol. 128, pp. 2154- 2165.
  11. Digonnet, M. J. F. (ed.), 1993. Rare-earth-doped fiber lasers and amplifiers. Marcel Dekker, Inc.
  12. Han, W.-T. & Kim, Y. H., 2002. Linear and nonlinear optical properties of optical fibers containing PbTe quantum dots for all optical switching application. 2nd Int. China-Korea Glass and Glass-Ceramics Symp., Shanghi.
  13. Heo, J., Cho, W. Y. & Chung, W. J., 1997. Sensitizing effect of Tm3+ on 2.9 µm emission from Dy3+-doped Ge25 Ga5 S70 glass. J. Non-Cryst. Solids, vol. 212, pp. 151-156.
  14. Judd, B. R., 1962. Optical absorption intensities of rareearth ions. Phy. Rev., vol. 127, pp. 750-761.
  15. Kobayashi, S., Shibata, N., Shibata, S. & Izawa, T., 1978. Characteristics of optical fibers in infrared wavelength region. Review of ECL, vol. 26, no. 3, pp. 453-467.
  16. Kobayashi, S., Shibata, S., Shibata, N. & Izawa, T., 1977. Refractive-index dispersion of doped fused silica. 1stInternational Conference on Integrated Optics and Optical Fiber Communication (IECE), Tokyo.
  17. Krupke, W. F., 1974. Induced-emission cross sections in neodymium laser glasses. IEEE J. Quantum Electron., vol. QE-10, no. 4, pp. 450-457.
  18. Lahoz, F., Shepherd, D. P., Wilkinson, J. S. & Hassan, M. A., 2008. Efficient blue upconversion emission due to confined radiative energy transfer in Tm3+-Nd3+ codoped Ta2O5 waveguides under infrared-laser excitation. Opt. Commun., vol. 281, pp. 3691-3694.
  19. Lee, D. J., Heo, J. & Park, S. H., 2003. Energy transfer and 1.48 µm emission properties in chalcohalide glasses doped with Tm3+ and Tb3+. J. Non-Cryst. Solids, vol. 331, pp. 181-189.
  20. Lucas, J. et al., 1978. Preparation and optical properties of neodymium fluorozirconate glasses. J. Non-Cryst. Solids, vol. 27, pp. 273-283.
  21. Lu, K. & Dutta, N. K., 2001. Spectroscopic properties of Nd-doped glass for 944 nm laser emission. J. Appl. Phys., vol. 89, no. 6, pp. 3079-3083.
  22. Martinez, A., Zenteno, L. A. & Kuo, J. C. K., 1998. Optical and spectroscopic characterization of Nddoped aluminosilicate fiber preforms made by the MCVD method using chelate delivery. Appl. Phys. B, vol. 67, pp. 17-21.
  23. Milam, D. & Weber, M. J., 1976. Measurement of nonlinear refractive-index coefficients using timeresolved interferometry: application to optical materials for high-power neodymium lasers. J. Appl. Phys., vol. 47, pp. 2497-2501.
  24. Peterka, P. et al., 2004. Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Opt. Quant. Electron., vol. 36, pp. 201-212.
  25. Quimby, R. S. & Miniscalco, W. J., 1989. Continuouswave lasing on a self-terminating transition. Appl. Opt., vol. 28, no. 1, pp. 14-16.
  26. Rakov, N., Gómez, L. A., Rátiva, D. J. & Maciel, G. S., 2002. Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions. J. Appl. Phys., vol. 92, no. 10, pp. 6337- 6339.
  27. Rakov, N., Gómez, L. A., Rátiva, D. J. & Maciel, G. S., 2009. Blue upconversion emission from Tm3+ sensitized by Nd3+ in aluminum oxide crystalline ceramic powders. Appl. Phys. B, vol. 94, pp. 199-202.
  28. Shen, S. et al., 2002. Tellurite glasses for broadband amplifiers and integrated optics. J. Am. Ceram. Soc., vol. 85, no. 6, pp. 1391-1395.
  29. Stokowski, S. E., Saroyan, R. A. & Weber, M. J., 1981. Nd-doped laser glass spectroscopic and physical properties. Lawrence Livermore National Laboratory, M-095, Rev. 2, 1.
  30. Tanabe, S., 2002. Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication. C. R. Chim., vol. 5, no. 5, pp. 815-824.
  31. Tanabe, S., Feng, X. & Hanada, T., 2000. Improved emission of Tm3+ doped glass for a 1.4-µm amplifier by radiative energy transfer between Tm3+ and Nd3+. Opt. Lett., vol. 25, no. 11, pp. 817-819.
  32. Thomas, I. M., Payne, S. A. & Wilke, G. D., 1992. Optical properties and laser demonstrations of Nd-doped solgel silica glasses. J. Non-Cryst. Solids, vol. 151, no. 3, pp. 183-194.
  33. Walsh, B. M. & Barnes, N. P., 2004. Comparison of Tm:ZBLAN and Tm:silica fiber lasers; spectroscopy and tunable pulsed laser operation around 1.9 µm. Appl. Phys. B, vol. 78, pp. 325-333.
  34. Watekar, P. R., Ju, S., Boo, S. & Han, W.-T., 2005. Linear and non-linear optical properties of Yb3+/Tm3+ codoped alumino-silicate glass prepared by sol-gel method. J. Non-Cryst. Solids, vol. 351, pp. 2446-2452.
  35. Watekar, P. R., Ju, S. & Han, W.-T., 2006. A small-signal power model for Tm-doped silica-glass optical fiber amplifier. IEEE Photon. Technol. Lett., vol. 18, no. 19, pp. 2035-2037.
  36. Weber, M. J., Lynch, J. E., Blackburn, D. H. & Cronin, D. J., 1983. Dependence of the stimulated emission cross section of Yb3+ on host glass composition. IEEE J. Quantum Electron., vol. 19, pp. 1600-1608.
  37. Yanbo, Q. et al., 2006. Spectroscopic properties of Nd3+- doped high silica glass prepared by sintering porous glass. J. Rare Earth., vol. 24, pp. 765-770.
  38. Yang, Z., Luo, L. & Chen, W., 2006. The 1.23 and 1.47 µm emissions from Tm3+ in chalcogenide glasses. J. Appl. Phys., vol. 99, no. 7, pp. 076107-3.
  39. Zabicky, J. (ed.), 2009. The chemistry of metal enolates, part 1. John Wiley & Sons Ltd.
  40. Zhang, J., Chung, W. J., Zhao, X. & Heo, J., 2010. Nd3+ sensitized blue upconversion luminescence in Nd3+/Pr3+ co-doped Ge-Ga-S-CsBr chalcohalide glasses. J. Non-Cryst. Solids, vol. 356, pp. 2406-2408.
  41. Zhang, J. W. et al., 2006. Optical amplification in Nd3+ doped electro-optic lanthanum lead zirconate titanate ceramics. Appl. Phys. Lett., vol. 89, pp. 061113.
  42. Zhou, B., Lin, H. & Pun, E.Y.-B., 2010. Tm3+-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1.20 µm wavelength region. Opt. Express, vol. 18, no.18, pp. 18805-18810.
  43. Zou, X. & Toratani, H., 1996. Spectroscopic properties and energy transfers in Tm3+ singly- and Tm3+/Ho3+ doubly-doped glasses. J. Non-Cryst. Solids, vol. 195, pp. 113-124.
Download


Paper Citation


in Harvard Style

Htein L., R. Watekar P., Fan W., Ju S., Hyeon Kim B. and Han W. (2013). Near Infrared Broadband Emission and Spectroscopic Properties of Tm3+/Nd3+ Codoped Optical Fiber . In Proceedings of the International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, ISBN 978-989-8565-44-0, pages 25-32. DOI: 10.5220/0004338200250032


in Bibtex Style

@conference{photoptics13,
author={Lin Htein and Pramod R. Watekar and Weiwei Fan and Seongmin Ju and Bok Hyeon Kim and Won-Taek Han},
title={Near Infrared Broadband Emission and Spectroscopic Properties of Tm3+/Nd3+ Codoped Optical Fiber},
booktitle={Proceedings of the International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,},
year={2013},
pages={25-32},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004338200250032},
isbn={978-989-8565-44-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS,
TI - Near Infrared Broadband Emission and Spectroscopic Properties of Tm3+/Nd3+ Codoped Optical Fiber
SN - 978-989-8565-44-0
AU - Htein L.
AU - R. Watekar P.
AU - Fan W.
AU - Ju S.
AU - Hyeon Kim B.
AU - Han W.
PY - 2013
SP - 25
EP - 32
DO - 10.5220/0004338200250032