Automatic Detection of Skin Cancer - Current Status, Path for the Future

William V. Stoecker, Nabin Mishra, Robert LeAnder, Ryan K. Rader, R. Joe Stanley

Abstract

How far are we away from a Star-Trek-like device that can analyze a lesion and assess its malignancy? We review the main challenges in this field in light of the Blois paradigm of clinical judgment and computers. The research community has failed to adequately address several challenges ripe for the application of digital technology: 1) early detection of changing lesions, 2) detection of non-melanoma skin cancers, and 3) detection of benign melanoma mimics. We highlight a new device and recent image analysis advances in abnormal color and texture detection. Anthropomorphic paradigms can be applied to machine vision. Data fusion has the potential to move automatic diagnosis of skin lesions closer to clinical practice. The fusion of Blois’ high-level clinical information with low-level image data can yield high sensitivity and specificity. Synergy between detection devices and humans can get us closer to this Star-Trek-like device.

References

  1. Argenziano, G., Soyer, H. P., De Giorgi, V., Piccolo, D., Carli, P., Delfino, M., Wolf, I. H., (2000). Interactive atlas of dermoscopy CD: EDRA Medical Publishing and New Media, Milan.
  2. Argenziano, G., Soyer, H. P., Chimenti, S., Talamini, R., Corona, R., Sera, F., Kopf, A. W., (2003). Dermoscopy of pigmented skin lesions: results of a consensus meeting via the Internet. Journal of the American Academy of Dermatology, 48(5), 679-83.
  3. Bickers, D. R., Lim, H. W., Margolis, D., Weinstock, M. A., Goodman, C., Faulkner, E., Dall T., (2006). The burden of skin disease: 2004, a joint project of the American Academy of Dermatology Association and the Society for Investigative Dermatology. Journal of the Academy of Dermatology, 55(3), 490-500.
  4. Blois, M. S., (1980). Clinical judgment and computers. New England Journal of Medicine, 303(4), 192-7.
  5. Burnet, N. G., Jefferies, S. J., Benson, R. J., Hunt, D. P. and Treasure, F. P., (2005). Years of life lost (YLL) from cancer is an important measure of population burden-and should be considered when allocating research funds. British Journal of Dermatology, 92(2), 241-5.
  6. Caselles, V., Kimmel, R., Sapiro, G. (1997). Geodesic active contours, International Journal of Computer Vision, 22(1): 61-79.
  7. Cheng, B., Stanley, R. J., Stoecker, W. V., Stricklin, S. M., Hinton, K. A. Nguyen, T. K., Moss, R. H. (2012). Analysis of clinical and dermoscopic features for basal cell carcinoma neural network classification. In press, Skin Research and Technology.
  8. Drugge, R. J., Nguyen, C., Gliga, L. and Drugge, E. D. (2010). Clinical pathway for melanoma detection using comprehensive cutaneous analysis with Melanoscan. Dermatology Online Journal, 16(8), 1.
  9. Guvenc, P., LeAnder, R. W., Kefel, S., Stoecker, W. V., Rader, R. K., Hinton, K. A., Moss, R. H. (2012) Sector expansion and elliptical modeling of blue-gray ovoids for basal cell carcinoma discrimination in dermoscopy images. In press, Skin Research and Technology.
  10. Kefel, S., Guvenc, P., LeAnder, R., Stricklin, S. M., Stoecker, W. V. (2012). Discrimination of basal cell carcinoma from benign lesions based on extraction of ulcer features in polarized-light dermoscopy images. Skin Research and Technology, 18(4), 471-5.
  11. Menzies, S. W., Kreusch, J., Byth, K., Pizzichetta, M. A., Marghoob, A., Braun, R, Johr, R. (2008). Dermoscopic evaluation of amelanotic and hypomelanotic melanoma. Archives of Dermatology, 144(9), 1120-7.
  12. Perona, P. and Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629-39.
  13. Salama, A. K., Rosa, N. D., Scheri, R. P., Herndon, J. E., Tyler, D. S., Marcello, J., Abernethy, A. P. (2012). The effect of metastatic site and decade of diagnosis on the individual burden of metastatic melanoma: contemporary estimates of average years of life lost. Cancer Investigation, 30(9), 637-41.
  14. Slue, W., Kopf, A.W. and Rivers, J. K., (1988). Totalbody photographs of dysplastic nevi. Archives of Dermatology, 124(8), 1239-43.
  15. Stanley, R. J., Stoecker, W. V., Moss, R. H., Gupta, K., Jella, P. (2005). Color and structural features for automatic skin lesion discrimination in dermoscopy images. 6th World Congress on Melanoma, Vancouver, BC, September 7, 2005.
  16. Stricklin, S. M., Stoecker, W. V., Malters, J. M., Drugge, R., Oliviero, M. & Rabinovitz, H. S., (2012). Melanoma in situ in a private practice setting 2005 through 2009: Location, lesion size, lack of concern. Journal of the American Academy of Dermatology, 67(3), e105-9.
Download


Paper Citation


in Harvard Style

V. Stoecker W., Mishra N., LeAnder R., K. Rader R. and Stanley R. (2013). Automatic Detection of Skin Cancer - Current Status, Path for the Future . In Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013) ISBN 978-989-8565-47-1, pages 504-508. DOI: 10.5220/0004348605040508


in Bibtex Style

@conference{visapp13,
author={William V. Stoecker and Nabin Mishra and Robert LeAnder and Ryan K. Rader and R. Joe Stanley},
title={Automatic Detection of Skin Cancer - Current Status, Path for the Future},
booktitle={Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)},
year={2013},
pages={504-508},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004348605040508},
isbn={978-989-8565-47-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Computer Vision Theory and Applications - Volume 1: VISAPP, (VISIGRAPP 2013)
TI - Automatic Detection of Skin Cancer - Current Status, Path for the Future
SN - 978-989-8565-47-1
AU - V. Stoecker W.
AU - Mishra N.
AU - LeAnder R.
AU - K. Rader R.
AU - Stanley R.
PY - 2013
SP - 504
EP - 508
DO - 10.5220/0004348605040508