Context-aware Recommendations through Activity Recognition

Toon De Pessemier, Simon Dooms, Kris Vanhecke, Bart Matté, Ewout Meyns, Luc Martens

Abstract

The mobile Internet introduces new opportunities to gain insight in the current user’s environment, behavior, and activity. This additional contextual information can be used as an extra information source to improve traditional recommendation algorithms. This article describes a framework to detect the current context and activity of the user by analyzing data retrieved from different sensors available on mobile devices. The framework can easily be extended to detect custom activities and is built in a generic way to ensure easy integration with other applications. On top of this framework, a recommender system is built to provide a personalized content offer, consisting of relevant information such as points-of-interest, train schedules, and touristic info, based on the user’s current context. Users who tested the application confirmed the usability and liked to use it. The recommendations are assessed as effective and help them to discover new places and interesting information.

References

  1. Adomavicius, G., Sankaranarayanan, R., Sen, S., and Tuzhilin, A. (2005). Incorporating contextual information in recommender systems using a multidimensional approach. ACM Trans. Inf. Syst., 23(1):103- 145.
  2. Bao, L. and Intille, S. (2004). Activity recognition from user-annotated acceleration data. In Ferscha, A. and Mattern, F., editors, Pervasive Computing, volume 3001 of Lecture Notes in Computer Science, pages 1- 17. Springer Berlin / Heidelberg.
  3. Biegel, G. and Cahill, V. (2004). A framework for developing mobile, context-aware applications. In Proceedings of the Second IEEE International Conference on Pervasive Computing and Communications (PerCom'04), PERCOM 7804, pages 361-, Washington, DC, USA. IEEE Computer Society.
  4. Breese, J. S., Heckerman, D., and Kadie, C. (1998). Empirical analysis of predictive algorithms for collaborative filtering. In Proceedings of the Fourteenth conference on Uncertainty in artificial intelligence, UAI'98, pages 43-52, San Francisco, CA, USA.
  5. CultuurNet-Vlaanderen (2012). Uitdatabank developer tools. Available at http://tools.uitdatabank.be/docs.
  6. Dodson, B. (2012). wikilocation.org/.
  7. Foursquare (2012). Foursquare API. Available at https:// developer.foursquare.com/.
  8. Google (2012a). Geocoding API. Available at https://developers.google.com/maps/documentation/geocoding/.
  9. Google (2012b). Places API. Available at https:// developers.google.com/places/documentation/.
  10. Herlocker, J. L., Konstan, J. A., Terveen, L. G., and Riedl, J. T. (2004). Evaluating collaborative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5-53.
  11. HLN (2012). Rss news feed. www.hln.be/rss.xml.
  12. Iacono, M., Krizek, K., and El-Geneidy, A. (2008). Access to destinations: How close is close enough? estimating accurate distance decay functions for multiple modes and different purposes. Technical report, University of Minnesota, Twin Cities. Minnesota Department of Transportation. ref.: MN/RC 2008-11.
  13. Kenteris, M., Gavalas, D., and Mpitziopoulos, A. (2010). A mobile tourism recommender system. In Proceedings of the The IEEE symposium on Computers and Communications, ISCC 7810, pages 840-845, Washington, DC, USA. IEEE Computer Society.
  14. Kwapisz, J. R., Weiss, G. M., and Moore, S. A. (2011). Activity recognition using cell phone accelerometers. SIGKDD Explor. Newsl., 12(2):74-82.
  15. Lee, S.-W. and Mase, K. (2002). Activity and location recognition using wearable sensors. Pervasive Computing, IEEE, 1(3):24 -32.
  16. Ravi, N., Dandekar, N., Mysore, P., and Littman, M. L. (2005). Activity recognition from accelerometer data. In Proceedings of the 17th conference on Innovative applications of artificial intelligence - Volume 3, IAAI'05, pages 1541-1546. AAAI Press.
  17. Ricci, F. (2010). Mobile recommender systems. Information Technology & Tourism, 12(3):205-231.
  18. Savidis, A. and Stephanidis, C. (2010). Software refactoring process for adaptive user-interface composition. In Proceedings of the 2nd ACM SIGCHI symposium on Engineering interactive computing systems, EICS 7810, pages 19-28, New York, NY, USA. ACM.
  19. Tiete, Y., Schmitz, S., and Colpaert, P. (2012). iRail API. Available at http://project.irail.be/wiki/API/APIv1.
Download


Paper Citation


in Harvard Style

De Pessemier T., Dooms S., Vanhecke K., Matté B., Meyns E. and Martens L. (2013). Context-aware Recommendations through Activity Recognition . In Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST, ISBN 978-989-8565-54-9, pages 481-490. DOI: 10.5220/0004353804810490


in Bibtex Style

@conference{webist13,
author={Toon De Pessemier and Simon Dooms and Kris Vanhecke and Bart Matté and Ewout Meyns and Luc Martens},
title={Context-aware Recommendations through Activity Recognition},
booktitle={Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,},
year={2013},
pages={481-490},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004353804810490},
isbn={978-989-8565-54-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 9th International Conference on Web Information Systems and Technologies - Volume 1: WEBIST,
TI - Context-aware Recommendations through Activity Recognition
SN - 978-989-8565-54-9
AU - De Pessemier T.
AU - Dooms S.
AU - Vanhecke K.
AU - Matté B.
AU - Meyns E.
AU - Martens L.
PY - 2013
SP - 481
EP - 490
DO - 10.5220/0004353804810490