Empirical Mode Decomposition-based Face Recognition System

Esteve Gallego-Jutglà, Karmele López-de-Ipiña, Pere Martí-Puig, Jordi Solé-Casals

Abstract

In this work we explore the multivariate empirical mode decomposition combined with a Neural Network classifier as technique for face recognition tasks. Images are simultaneously decomposed by means of EMD and then the distance between the modes of the image and the modes of the representative image of each class is calculated using three different distance measures. Then, a neural network is trained using 10- fold cross validation in order to derive a classifier. Preliminary results (over 98 % of classification rate) are satisfactory and will justify a deep investigation on how to apply mEMD for face recognition.

References

  1. Bishop, C. M., (1995). Neural Networks for Pattern Recognition. Oxford University Press.
  2. Diez, P. F., Mut, V., Laciar, E., Torres, A., Avilla, E. (2009). Application of the Empirical Mode Decomposition to the Extraction of Features form EEG signals for Mental Task Classification. 31st Annual International Conference of the IEEE EMBS.
  3. Freeman, J. A., Skapura, D. M. (1991). Neural Networks: Algorithms, Applications and Programming Techniques. Addison-Wesley Publishing Company, Inc. Reading, MA
  4. Gallego-Jutglà, E., Solé-Casals, J., “Exploring mEMD for face recognition”, BIOSIGNALS conference proceedings, BIOSTEC 2012.
  5. Huang, N. E., Shen, Z., Long,S. R., Wu, M. C., Shih, H. H:, Zheng, Q., Yen, N. C., Tung, C. C., Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond., 495, 2317-2345.
  6. Hush, D. R., Horne, B. G. (1993). Progress in supervised neural networks. IEEE Signal Processing Magazine,10 (1), pp. 8-39.
  7. Iancu, C., Corcoran, P., Costache, G. (2007). A Review of Face Recognition Techniques for In-Camera Applications. International Symposium on Signals, Circuits and Systems,1,1-4.
  8. Lippmann, D. E. (1987). An Introduction to Computing with Neural Networks. IEEE ASSP Magazine, 3(4), pp. 4-22
  9. Molla, K. I., Tanaka, T., Rutkowski, T. M., Cichocki, A., (2010). Separation of EOG artifacts from EEG singals using bivariate EMD. Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE Interational Conference On. 562-565.
  10. Mutlu, A. Y., Aviyente, S. (2011). Mutivariate Empirical Mode Decomposition for Quantifying Multivariate Phase Synchronization. EURASIP Jounal on Advances in Signal Processing. Article ID 615717
  11. Rehman, N., Mandic, D. P., (2010). Multivariate empirical mode decomposition. Proc. R. Soc. A. 466, 1291- 1302.
  12. Travieso, C. M., Solé-Casals, J., Zaiats, V., Alonso, J. B., Ferrer, M.A., “Reducción del Vector de Características en Reconocimiento Facial”, XXIII Simposium Nacional de la Unión Científica Internacional de Radio URSI 2008.
  13. Woodward, J. D., Orlans, N.M., Higgins P. T. (2003). Biometrics. McGraw-Hill.
  14. Xiao Q. (2007). Technology review - BiometricsTechnology, Application, Challenge, and Computational Intelligence Solutions. IEEE Computational Intelligence Magazine, 2, 5-25.
Download


Paper Citation


in Harvard Style

Gallego-Jutglà E., López-de-Ipiña K., Martí-Puig P. and Solé-Casals J. (2013). Empirical Mode Decomposition-based Face Recognition System . In Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2013) ISBN 978-989-8565-36-5, pages 445-450. DOI: 10.5220/0004359104450450


in Bibtex Style

@conference{mpbs13,
author={Esteve Gallego-Jutglà and Karmele López-de-Ipiña and Pere Martí-Puig and Jordi Solé-Casals},
title={Empirical Mode Decomposition-based Face Recognition System},
booktitle={Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2013)},
year={2013},
pages={445-450},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004359104450450},
isbn={978-989-8565-36-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Bio-inspired Systems and Signal Processing - Volume 1: MPBS, (BIOSTEC 2013)
TI - Empirical Mode Decomposition-based Face Recognition System
SN - 978-989-8565-36-5
AU - Gallego-Jutglà E.
AU - López-de-Ipiña K.
AU - Martí-Puig P.
AU - Solé-Casals J.
PY - 2013
SP - 445
EP - 450
DO - 10.5220/0004359104450450