Resource versus Space Competitions in a Plant Growth Model

A. El Hamidi

Abstract

In this tutorial note, we present a spatiotemporal model for plant growth, combining two different mechanisms of competition. The first mechanism concerns the biomass growth via resources while the second concerns the space-biomass expansion. The pure time mechanism is described by the standard underlying Kolmogorov model for interacting populations. The spatial mechanism, more adapted to plant growth, expresses the motility of each species and their capability to exclude the others from its territory.

References

  1. H. Amann, Nonhomogeneous linear and quadilinear elliptic and parabolic boundary value problems. Function Spaces,Differential Operators and Nonlinear Analysis. H.J. Schmeisser, H. Triebel (editors), Teubner, Stuttgart, Leipzig. (1993), 9-126.
  2. R. Aris, The mathematical theory of diffusion and reaction in permeable catalysts. Vol. I: The theory of the steady state. Oxford University Press. XVI, (1975).
  3. F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology. Springer Verlag, Texts in applied mathematics 40, (2000)
  4. S. N. Busenberg, C. C. Travis, Epidemic models with spatial spread due to population migration. J. Math. Biol. 16 (1983), 181 - 198.
  5. V. Capasso, A. Di Liddo, L. Maddalena, Asymptotic behaviour of a nonlinear model for the geographical diffusion of innovations, Dyn. Syst. Appl. (2) 3 (1994), 207 - 219.
  6. E. L. Cussler, Multicomponent Diffusion, Chemical Engineering Monographs, Elsevier Scientific Publishing Compagny, Amsterdam, (3) (1976).
  7. J. M. Cushing, An Introduction to Structured Population Dynamics, CBMS-NSF Regional Conf. Series in Appl. Math. 71, SIAM, Philadelphia, (1998).
  8. M. Farkas, Comparison of different ways of modelling cross-diffusion, Differential Equations Dynam. Systems (7) 2 (1999), 121 - 138.
  9. A. El Hamidi, M. Garbey, N. Ali, A PDE model of clonal plant competition with nonlinear diffusion, Ecological Modelling 234 (2012) 83 - 92.
  10. P. L. Garcia-Ybarra, P. Calvin, Cross transport effects in premixed flames, Progress in Astronautics and Aeronautics, The American Institute of Aeronautics and Astronautics, New York, 76 (1981), 463 - 481.
  11. V. Grimm, S.F. Railback, Individual-based Modeling and Ecology, Princeton series in theoretical and computational biology, ed. S.A. Levin, Princeton Univ. Press 428, (2005).
  12. M. E. Gurtin, R. C. MacCamy, On the diffusion of biological population. Math. Biosci. 33 (1977), 35 - 49.
  13. J. Jorné, Negative ionic cross-diffusion coefficients in electrolytic solutions, J. Theor. Biol. 55 (1975), 529 - 532.
  14. J. Jorné, The Diffusive Lotka-Volterra Oscillating System, J. Theor. Biol. 65 (1977), 133 - 139.
  15. E. F. Keller, L. A. Segel, Initiation of slime mold aggregation vieuwed as an instability, J. Theor. Biol. 26 (1970), 399 - 415.
  16. M. Kirane, S. Kouachi: Asymptotic behaviour for a system describing epidemics with migration and spatial spread of infection, Dyn. Syst. Appl. (1) 2 (1993), 121 - 130.
  17. K. Kishimoto, H. Weinberger, The spatial homogeneity of stable equilibria of some reactiondiffusion systems on convex domains. J. Differential Equations 58 (1985), 15 - 21.
  18. J. D. Murray, Mathematical biology. Springer-Verlag, 1993.
  19. Beáta Oborny, Growth Rules in Clonale Plants and Environmental Predictability - A Simulation Study, The Journal of Ecology, Vol 2, N0 2, 341-351, 1994.
  20. Beáta Oborny, Tamás Czárán, Ádám Kun, Exploration and Exploitation of Resource Patches by Clonal Growth: a Spatial Mode on the Effect of Transport Between Modules, Ecological Modelling 141 (2001) 151 - 169.
  21. A. Okubo, Diffusion and Ecological Problems: Mathematical Models, Springer Verlag, (1991), 169 - 184.
  22. S. W. Pacal, D. Tilman, Limiting Similarity in Mechanistic and Spatial Models of Plant Competition in Heterogeneous Environments, Amercian naturalist, Vol. 143-2, (1994), 222- 257.
  23. G. Rosen, Effect of diffusion on the stability of the equilibrium in multi-species ecological systems, Bull. Math. Biol. 39 (1977), 373 - 383.
  24. J. Savchik, B. Chang, H. Rabits, Application of moments to the general linear multicomponents reaction-diffusion equations, J. Phys. Chem. 87 (1983), 1990 - 1997.
  25. H. L. Toor, Solution of the linearized equations of multicomponent mass transfer: I, A. I. Ch. E. Journal, 10 (1964), 448 - 455.
  26. H. L. Toor, Solution of the linearized equations of multicomponent mass transfer: II. matrix methods, A. I. Ch. E. Journal, 10 (1964), 460 - 465.
  27. N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species. J. Theoret. Biol. 79 (1979), 83-99.
  28. J. Smoller, Shock waves and reaction-diffusion equations. Springer-Verlag, New York (1983).
Download


Paper Citation


in Harvard Style

El Hamidi A. (2013). Resource versus Space Competitions in a Plant Growth Model . In Proceedings of GEODIFF 2013 - Volume 1: GEODIFF, (VISIGRAPP 2013) ISBN 978-989-8565-49-5, pages 39-45. DOI: 10.5220/0004362200390045


in Bibtex Style

@conference{geodiff13,
author={A. El Hamidi},
title={Resource versus Space Competitions in a Plant Growth Model},
booktitle={Proceedings of GEODIFF 2013 - Volume 1: GEODIFF, (VISIGRAPP 2013)},
year={2013},
pages={39-45},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004362200390045},
isbn={978-989-8565-49-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of GEODIFF 2013 - Volume 1: GEODIFF, (VISIGRAPP 2013)
TI - Resource versus Space Competitions in a Plant Growth Model
SN - 978-989-8565-49-5
AU - El Hamidi A.
PY - 2013
SP - 39
EP - 45
DO - 10.5220/0004362200390045