Artificial Neural Network based Methodologies for the Spatial and Temporal Estimation of Air Temperature - Application in the Greater Area of Chania, Greece

Despina Deligiorgi, Kostas Philippopoulos, Georgios Kouroupetroglou

Abstract

Artificial Neural Networks (ANN) propose an alternative promising methodological approach to the problem of time series assessment as well as point spatial interpolation of irregularly and gridded data. ANNs can be used as function approximators to estimate both the time and spatial air temperature distributions based on observational data. After reviewing the theoretical background as well as the relative advantages and limitations of ANN methodologies applicable to the field of air temperature time series and spatial modelling, this work focuses on implementation issues and on evaluating the accuracy of the AAN methodologies using a set of metrics in the case of a specific region with complex terrain. A number of alternative feed forward ANN topologies have been applied in order to assess the spatial and time series air temperature prediction capabilities in different horizons. For the temporal forecasting of air temperature ANNs were trained using the Levenberg-Marquardt back propagation algorithm with the optimum architecture being the one that minimizes the Mean Absolute Error on the validation set. For the spatial estimation of air temperature the Radial Basis Function and Multilayer Perceptrons non-linear Feed Forward AANs schemes are compared. The underlying air temperature temporal and spatial variability is found to be modeled efficiently by the ANNs.

References

  1. Bishop, C. M. (1995). Neural networks for pattern recognition (1st ed.). Cambridge: Oxford University Press.
  2. Chai, H., Cheng, W., Zhou, C., Chen, X., Ma, X. & Zhao, S. (2011). Analysis and comparison of spatial interpolation methods for temperature data in Xinjiang Uygur Autonomous Region, China. Natural Science, 3(12), 999-1010. doi:10.4236/ns.2011.312125.
  3. Chronopoulos, K., Tsiros, I., Dimopoulos, I. & Alvertos, N. (2008). An application of artificial neural network models to estimate air temperature data in areas with sparse network of meteorological stations. Journal of Environmental Science and Health, Part A: Toxic/Hazardous Substances and Environmental Engineering, 43(14), 1752-1757. doi: 10.1080/ 10934520802507621.
  4. Cybenco, G. (1989). Approximation by superposition of a sigmoidal function. Mathematics of Control Signals and Systems, 2(4), 303-314. doi: 10.1007/BF02551274.
  5. Deligiorgi, D., Kolokotsa, D., Papakostas, T., Mantou, E. (2007). Analysis of the wind field at the broader area of Chania, Crete. Proceedings of the 3rd IASME/WSEAS International Conference on Energy, Environment and Sustainable Development (pp 270- 275). Agios Nikolaos, Crete: World Scientific and Engineering Academy and Society Press. Retrieved from: http://www.wseas.us/ebrary/conferences/2007creteeeesd/papers/562-194.pdf.
  6. Deligiorgi, D., Philippopoulos, K. (2011). Spatial Interpolation Methodologies in Urban Air Pollution Modeling: Application for the Greater Area of Metropolitan Athens, Greece. In F. Nejadkoorki (Ed.) Advanced Air Pollution, Rijeka, Croatia: InTech Publishers. doi: 10.5772/17734.
  7. Deligiorgi, D., Philippopoulos, K., & Kouroupetroglou, G. (2012, to appear). Artificial Neural Network based methodologies for the estimation of wind speed. In F. Cavallaro, F. (Ed.) Assesment and Simulation tools for Sustainable energy Systems. Berlin: Springer.
  8. Dombayc, O. & Golcu, M. (2009). Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey. Renewable Energy, 34(3), 1158-1161. doi: 10.1016/j.renene.2008.07.007.
  9. Fausett, L. V. (1994). Fundamentals neural networks: architecture, algorithms, and applications. New Jersey: Prentice-Hall, Inc.
  10. Fox, D. G. (1981). Judging air quality model performance. Bulletin of the American Meteorological Society, 62(5), 599-609. doi: 10.1175/1520-0477(1981)062< 0599:JAQMP>2.0.CO;2.
  11. Gardner, M. W. & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron)-A review of applications in the atmospheric sciences. Atmospheric Environment, 32(14-15), 2627-2636. doi: 10.1016/ S1352-2310(97)00447-0.
  12. Heaton, J. (2005). Introduction to Neural Networks with Java. Chesterfield: Heaton Research Inc.
  13. Hornik, K., Stinchcombe, M. & White, H. (1989). Multilayer feedforward networks are universal approximators. Neural Networks 2(5), 359-366. doi: 10.1016/0893-6080(89)90020-8.
  14. Jain, A. K., Mao, J. & Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer 29(3), 31-44. doi:10.1109/2.485891.
  15. Koletsis, I., Lagouvardos, K., Kotroni, V. & Bartzokas, A., (2009). The interaction of northern wind flow with the complex topography of Crete island-Part 1: Observational study. Natural Hazards and Earth System Sciences, 9, 1845-1855. doi: 10.5194/nhess-9- 1845-2009.
  16. Koletsis, I., Lagouvardos, K., Kotroni, V. & Bartzokas. A. (2010). The interaction of northern wind flow with the complex topography of Crete island-Part 2: Numerical study. Natural Hazards and Earth System Sciences 10, 1115-1127. doi: 10.5194/nhess-10-1115-2010.
  17. Kotroni, V., Lagouvardos, K. & Lalas, D. (2001). The effect of the island of Crete on the etesian winds over the Aegean sea. Quarterly Journal of the Royal Meteorological Society 127(576), 1917-1937. doi: 10.1002/qj.49712757604.
  18. Mihalakakou, G., Flocas, H., Santamouris, M. & Helmis, C. (2002). Application of Neural Networks to the Simulation of the Heat Island over Athens, Greece, Using Synoptic Types as a Predictor. Journal of Applied Meteorology, 41(5), 519-527. doi: 10.1175/ 1520-0450(2002)041<0519:AONNTT>2.0.CO;2.
  19. Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation: a review. Mason, J. C. & Cox, M. G. (Eds) Algorithms for Approximation, Oxford: Clarendon Press.
  20. Price, D. T., McKenney, D. W., Nalder, I.A., Hutchinson, M. F. & Kesteven, J. L. (2000). A comparison of two statistical methods for spatial interpolation of Canadian monthly mean climate data. Agricultural and Forest Meteorology, 101(2-3), 81-94. doi:10.1016/S0168-1923(99)00169-0.
  21. Rumelhart, D. E., Hinton, G. E. & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature 323, 533-536. doi: 10.1038/323533a0
  22. Smith, B., Hoogenboom, G. & McClendon, R. (2009). Artificial neural networks for automated year-round temperature prediction. Computers and Electronics in Agriculture 68(1), 52-61. doi: 10.1016/j.compag. 2009.04.003.
  23. Snell, S., Gopal, S. & Kaufmann, R. (2000). Spatial Interpolation of Surface Air Temperatures Using Artificial Neural Networks: Evaluating Their Use for Downscaling GCMs. Journal of Climate, 13(5), 886- 895. doi: 0.1175/1520-0442(2000)013<0886: SIOSAT >2.0.CO;2.
  24. Tasadduq, I., Rehman, S. & Bubshait, K. (2002). Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia. Renewable Energy, 25(4), 545-554. doi: 10.1016/ S0960 -1481(01)00082-9.
  25. Willmott, C. J. (1982). Some comments on the evaluation of model performance. Bulletin American Meteorological Society, 63(11), 1309-1313. doi: 10. 1175/1520-0477(1982)063<1309:SCOTEO> 2.0.CO;2.
  26. Yu, H. & Wilamowski, B. M. (2011). LevenbergMarquardt training. Wilamowski, B.M. & Irwin, J.D. (Eds) Industrial Electronics Handbook (2nd ed.). Boca Raton: CRC Press.
  27. Zhang, G. P., Patuwo, E. & Hu, M. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 14(1), 35-62. doi: 10.1016/S0169-2070(97)00044-7.
Download


Paper Citation


in Harvard Style

Deligiorgi D., Philippopoulos K. and Kouroupetroglou G. (2013). Artificial Neural Network based Methodologies for the Spatial and Temporal Estimation of Air Temperature - Application in the Greater Area of Chania, Greece . In Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: PRG, (ICPRAM 2013) ISBN 978-989-8565-41-9, pages 669-678. DOI: 10.5220/0004373906690678


in Bibtex Style

@conference{prg13,
author={Despina Deligiorgi and Kostas Philippopoulos and Georgios Kouroupetroglou},
title={Artificial Neural Network based Methodologies for the Spatial and Temporal Estimation of Air Temperature - Application in the Greater Area of Chania, Greece},
booktitle={Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: PRG, (ICPRAM 2013)},
year={2013},
pages={669-678},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004373906690678},
isbn={978-989-8565-41-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Pattern Recognition Applications and Methods - Volume 1: PRG, (ICPRAM 2013)
TI - Artificial Neural Network based Methodologies for the Spatial and Temporal Estimation of Air Temperature - Application in the Greater Area of Chania, Greece
SN - 978-989-8565-41-9
AU - Deligiorgi D.
AU - Philippopoulos K.
AU - Kouroupetroglou G.
PY - 2013
SP - 669
EP - 678
DO - 10.5220/0004373906690678