Workload Management for Dynamic Partitioning Schemes in Replicated Databases

M. Louis-Rodríguez, J. Navarro, I. Arrieta-Salinas, A. Azqueta-Alzuaz, A. Sancho-Asensio, J. E. Armendáriz-Iñigo


Recent advances on providing transactional support on the cloud rely on keeping databases properly partitioned in order to preserve their beloved high scalability features. However, the dynamic nature of cloud environments often leads to either inefficient partitioning schemes or unbalanced partitions, which prevents the resources from being utilized on an elastic fashion. This paper presents a load balancer that uses offline artificial intelligence techniques to come out with the optimal partitioning design and replication protocol for a cloud database providing transactional support. Performed experiments proof the feasibility of our approach and encourage practitioners to progress on this direction by exploring online and unsupervised machine learning techniques applied to this domain.


  1. Aguilera, M. K., et al. (2009). Sinfonia: A new paradigm for building scalable distributed systems. ACM Trans. Comput. Syst., 27(3).
  2. Arrieta-Salinas, I., et al. (2012). Classic replication techniques on the cloud. In ARES 2012, pages 268-273.
  3. Birman, K. P. (2012). Guide to Reliable Distributed Systems-Building High-Assurance Applications and Cloud-Hosted Services. Texts in computer science. Springer.
  4. Brewer, E. A. (2012). Pushing the CAP: Strategies for consistency and availability. IEEE Comput., 45(2):23-29.
  5. Chang, F., et al. (2006). Bigtable: A distributed storage system for structured data. In OSDI 2006, pages 205- 218.
  6. Cooper, B.F., et al. (2010). Benchmarking cloud serving systems with YCSB. In SoCC 2010, pages 143-154.
  7. Corbett, J.C., et al. (2012). Spanner: Google's globallydistributed database. In OSDI 2012, pages 251-264.
  8. Curino, C., et al. (2010). Schism: A workload-driven approach to database replication and partitioning. Proc. VLDB Endow., 3(1-2):48-57.
  9. Curino, C., et al. (2011). Relational cloud: A database service for the cloud. In CIDR 2011, pages 235-240.
  10. Curino, C., et al. (2012). OLTPBenchmark. Accessible in URL:
  11. Das, S., et a.l (2010). ElasTraS: An elastic transactional data store in the cloud. CoRR, abs/1008.3751.
  12. Daudjee, K. and Salem, K. (2006). Lazy database replication with snapshot isolation. In VLDB 2006, pages 715-726.
  13. DeCandia, G., et al. (2007). Dynamo: Amazon's highly available key-value store. In SOSP 2007, pages 205- 220.
  14. Gray, J., et al. (1996). The dangers of replication and a solution. In SIGMOD 1996, pages 173-182.
  15. Hulten, G., et al. (2001). Mining time-changing data streams. In SIGKDD 2001, pages 97-106.
  16. Karypis, G. (2011). METIS: A software package for partitioning meshes, and computing fill-reducing orderings of sparse matrices (v.5.0). In: http://
  17. Karypis, G. and Kumar, V. (1998). hMeTiS a hypergraph partitioning package (v.1.5.3). In: http://
  18. Lamport, L. (1998). The part-time parliament. ACM Trans. Comput. Syst., 16:133-169.
  19. Levandoski, J.J., et al. (2011). Deuteronomy: Transaction support for cloud data. In CIDR 2011, pages 123-133.
  20. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers.
  21. Stanton, J. R. (2005). The Spread Toolkit. Accessible in URL:
  22. Stonebraker, M. (2010). SQL databases v. NoSQL databases. Commun. ACM, 53(4):10-11.
  23. Tatarowicz, A.L., et al. (2012). Lookup tables: fine-grained partitioning for distributed databases. In ICDE 2012, pages 102 -113.
  24. Vogels, W. (2009). Eventually consistent. Communications of the ACM, 52(1):40-44.
  25. White, T. (2012). Hadoop-The Definitive Guide: Storage and Analysis at Internet Scale (3. ed.). O'Reilly.
  26. Wiesmann, M. and Schiper, A. (2005). Comparison of database replication techniques based on total orIIEEE Trans. Knowl. Data Eng., der broadcast.

Paper Citation

in Harvard Style

Louis-Rodríguez M., Navarro J., Arrieta-Salinas I., Azqueta-Alzuaz A., Sancho-Asensio A. and E. Armendáriz-Iñigo J. (2013). Workload Management for Dynamic Partitioning Schemes in Replicated Databases . In Proceedings of the 3rd International Conference on Cloud Computing and Services Science - Volume 1: CLOSER, ISBN 978-989-8565-52-5, pages 273-278. DOI: 10.5220/0004375902730278

in Bibtex Style

author={M. Louis-Rodríguez and J. Navarro and I. Arrieta-Salinas and A. Azqueta-Alzuaz and A. Sancho-Asensio and J. E. Armendáriz-Iñigo},
title={Workload Management for Dynamic Partitioning Schemes in Replicated Databases},
booktitle={Proceedings of the 3rd International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,},

in EndNote Style

JO - Proceedings of the 3rd International Conference on Cloud Computing and Services Science - Volume 1: CLOSER,
TI - Workload Management for Dynamic Partitioning Schemes in Replicated Databases
SN - 978-989-8565-52-5
AU - Louis-Rodríguez M.
AU - Navarro J.
AU - Arrieta-Salinas I.
AU - Azqueta-Alzuaz A.
AU - Sancho-Asensio A.
AU - E. Armendáriz-Iñigo J.
PY - 2013
SP - 273
EP - 278
DO - 10.5220/0004375902730278