Enhanced Resolution Methods for Improving Image Analysis and Pattern Recognition in Scanning Probe Microscopy

Mario D'Acunto, Gabriele Pieri, Marco Righi, Ovidio Salvetti

Abstract

Image acquisition systems integrated with laboratory automation produces multi-dimensional datasets. An effective computational approach to objectively analyzing image datasets is pattern recognition (PR), i.e. a machinelearning approach where the machine finds relevant patterns that distinguish groups of objects after being trained on examples (supervised machine learning). In contrast, the other approach to machine learning and artificial intelligence is unsupervised learning, where the intelligent process finds relevant patterns without relying on prior training examples, usually by using a set of pre-defined rules. In this paper we apply a method derived by usual PR techniques for the recognition of artifacts and noise on images recorded with Atomic Force Microscopy (AFM). The advantage of automatic artifacts recognition could be the implementation of machine learning languages for AFM investigations.

References

  1. Image Process. 6: 774-8. Kang, M. G.; and Chaudhuri, S. 2003. Super-resolution image reconstruction. IEEE Signal Process. Mag. 20: 19-20.
  2. Ng, M. K.; and Bose, N. K. 2003. Mathematical analysis of super-resolution methodology. IEEE Signal Processing Magazine 20(3):62-74.
  3. Park, S. C.; Park, M. K.; and Kang, M. G. 2003. Super-resolution image reconstruction: a technical overview. IEEE Signal Processing Magazine 20(3): 21-36.
  4. Rajan, D.; Chaudhuri, S.; and Joshi, M. V. 2003. Multi-objective super resolution concepts and examples. IEEE Signal Processing Magazine 20(3): 49-61.
  5. Rajan, D.; and Chaudhuri, S. 2003. Simultaneous estimation of super-resolution scene and depth map from low resolution defocuses observations. IEEE Trans. On Pattern Analysis and Machine Intelligence 25(9): 1102-17.
  6. Processing 5(6): 996-1011. Segall, C. A.; Molina, R.; and Katsaggelos, A. K. 2003. Highresolution images from low-resolution compressed video. IEEE Signal Processing Magazine 20(3): 37-48.
  7. Callicó, G. M.; Núñez, A.; Llopis, R. P.; and Sethuraman, R. 2003. Low-cost and real-time super-resolution over a video encoder thIP. Proc. 4 IEEE Int. Symp. on Quality Electronic Design (ISQED'03), San Jose, CA, USA, 24-26 March 2003, pp. 79-84. IEEE Computer Society, Washington, DC, USA.
  8. Jiang, Z.; Wong, Tien-Tsin; and Bao, H. 2003. Practical super-resolution from dynamic video sequences. Proc. IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'03), Madison, WI, USA, 16-22 June 2003, vol. 2, pp. 549-54. IEEE Computer Society, Washington, DC, USA.
  9. Zibetti, M. V. W.; and Mayer, J. 2005. Simultaneous super-resolution for video sequences. Proc. IEEE Int. Conf. on Image Processing (ICIP'05), Genoa, Italy, 11-14 September 2005, vol. 1, pp. 877-80. IEEE Signal Processing Society, Piscataway, NJ,USA.
  10. Karthik Kumar1, Huigao Duan1, Ravi S. Hegde, Samuel C. W. Koh1, Jennifer N. Wei and Joel K. W. Yang; Printing colour at the optical diffraction limit; august 2012, pp. 557-561, Nature Nanotecnology.
  11. T. Hastie, R. Tibshirani, and J. Friedman. The elements of Statistical Learning - Data Mining, Inference and Prediction. Springer, 2001.
  12. J. Shawe-Taylor and N. Cristianini. Kernel methods for pattern analysis. Cambridge University Press, Cambridge, 2004.
  13. W. W. W. Zou and P. C. Yuen; “Very Low Resolution Face Recognition Problem”; Transactions on Image Processing, vol. 12, N. 1, January 2012
Download


Paper Citation


in Harvard Style

D'Acunto M., Pieri G., Righi M. and Salvetti O. (2013). Enhanced Resolution Methods for Improving Image Analysis and Pattern Recognition in Scanning Probe Microscopy . In Proceedings of the 4th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-4, (VISIGRAPP 2013) ISBN 978-989-8565-50-1, pages 22-28. DOI: 10.5220/0004392400220028


in Bibtex Style

@conference{imta-413,
author={Mario D'Acunto and Gabriele Pieri and Marco Righi and Ovidio Salvetti},
title={Enhanced Resolution Methods for Improving Image Analysis and Pattern Recognition in Scanning Probe Microscopy},
booktitle={Proceedings of the 4th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-4, (VISIGRAPP 2013)},
year={2013},
pages={22-28},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004392400220028},
isbn={978-989-8565-50-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 4th International Workshop on Image Mining. Theory and Applications - Volume 1: IMTA-4, (VISIGRAPP 2013)
TI - Enhanced Resolution Methods for Improving Image Analysis and Pattern Recognition in Scanning Probe Microscopy
SN - 978-989-8565-50-1
AU - D'Acunto M.
AU - Pieri G.
AU - Righi M.
AU - Salvetti O.
PY - 2013
SP - 22
EP - 28
DO - 10.5220/0004392400220028