Case Study: Condition Assessment of a Photovoltaic Power Plant using Change-point Analysis

Steffen Dienst, Johannes Schmidt, Stefan Kühne

Abstract

Today, the operation of sustainable power plants mainly relies on visualization of power production. Measurement data of such power plants are often discarded. We show the idle potential of such data by applying a state of the art algorithm to recognize malfunctions in a photovoltaic power plant. Up to now, these failures could only be found by manual inspection of the power plant every six weeks. Our results show a substantial financial benefit: power outages of power plant components due to fuse failures often can be recognized within days. This fact results in a reduction of financial losses up to at least 63% by being able to schedule repairs faster.

References

  1. Abdallah, S. and Nijmeh, S. (2004). Two axes sun tracking system with plc control. Energy Conversion and Management, 45(1112):1931 - 1939.
  2. Chandola, V., Banerjee, A., and Kumar, V. (2012). Anomaly detection for discrete sequences: A survey. Knowledge and Data Engineering, IEEE Transactions on, 24(5):823 -839.
  3. Draper, D. (1988). Rank-based robust analysis of linear models. i. exposition and review. Statistical Science, 3(2):pp. 239-257.
  4. Fu, T.-c. (2011). A review on time series data mining. Engineering Applications of Artificial Intelligence, 24(1):164 - 181.
  5. Gaber, M. M., Zaslavsky, A., and Krishnaswamy, S. (2005). ”mining data streams: a review”. SIGMOD Rec., 34(2):18-26.
  6. Guenther, J., Rothe, M., Hefer, J., Middendorf, A., and Lang, K. (May). Condition monitoring system adapted for photovoltaic power converter. In Environment and Electrical Engineering (EEEIC), 2011 10th International Conference on, pages 1-4.
  7. Hill, T. and Lewicki, P. (2005). Statistics: Methods and Applications. StatSoft, Inc.
  8. Hinkley, D. V. (1971). Inference about the change-point from cumulative sum tests. Biometrika, 58(3):pp. 509-523.
  9. Keogh, E., Lin, J., and Fu, A. (2005). Hot sax: efficiently finding the most unusual time series subsequence. In Data Mining, Fifth IEEE International Conference on, page 8 pp.
  10. Makhoul, J., Kubala, F., Schwartz, R., and Weischedel, R. (1999). Performance measures for information extraction. In In Proceedings of DARPA Broadcast News Workshop, pages 249-252.
  11. Middendorf, A., Nissen, N., Guttowski, S., and Lang, K. (2011). Electronics condition monitoring for improving sustainability of power electronics. In Seliger, G., Khraisheh, M. M., and Jawahir, I., editors, Advances in Sustainable Manufacturing, pages 171-175. Springer Berlin Heidelberg.
  12. Moore, L. M. and Post, H. N. (2008). Five years of operating experience at a large, utility-scale photovoltaic generating plant. Progress in Photovoltaics: Research and Applications, 16(3):249-259.
  13. Oozeki, T., Yamada, T., Otani, K., Takashima, T., and Kato, K. (2010). An analysis of reliability in the early stages of photovoltaic systems in japan. Progress in Photovoltaics: Research and Applications, 18(5):363-370.
  14. Papadakis, K., Koutroulis, E., and Kalaitzakis, K. (2005). A server database system for remote monitoring and operational evaluation of renewable energy sources plants. Renewable Energy, 30(11):1649 - 1669.
  15. Peng, Z. and Chu, F. (2004). Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mechanical Systems and Signal Processing, 18(2):199 - 221.
  16. Perpian, O. (2009). Statistical analysis of the performance and simulation of a two-axis tracking pv system. Solar Energy, 83(11):2074 - 2085.
  17. Robbins, M., Gallagher, C., Lund, R., and Aue, A. (2011). Mean shift testing in correlated data. Journal of Time Series Analysis, 32(5):498-511.
  18. Sanz-Bobi, M. A., Roque, A. M. S., de Marcos, A., and Bada, M. (2012). Intelligent system for a remote diagnosis of a photovoltaic solar power plant. Journal of Physics: Conference Series, 364(1):012119.
  19. Saravanan, N., Siddabattuni, V. K., and Ramachandran, K. (2010). Fault diagnosis of spur bevel gear box using artificial neural network (ann), and proximal support vector machine (psvm). Applied Soft Computing, 10(1):344 - 360.
  20. Sundheim, B. M. (1992). Overview of the fourth message understanding evaluation and conference. In Proceedings of the 4th conference on Message understanding, MUC4 7892, pages 3-21, Stroudsburg, PA, USA. Association for Computational Linguistics.
  21. Toliyat, H. A., Nandi, S., Choi, S., and Meshgin-Kelk, H. (2012). Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis. CRC Press.
  22. Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., and Yin, K. (2003). A review of process fault detection and diagnosis: Part iii: Process history based methods. Computers and Chemical Engineering, 27(3):327 - 346.
  23. Wayne, T. A. (2000). Change-point analysis: A powerful new tool for detecting changes. CTAN: http:// www.variation.com/cpa/tech/changepoint.html.
  24. Widodo, A. and Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21(6):2560 - 2574.
  25. Wirth, H. (2013). Aktuelle Fakten zur Photovoltaik in Deutschland. http://www.ise.fraunhofer.de/de/ veroeffentlichungen/veroeffentlichungen-pdf-dateien/ studien-und-konzeptpapiere/aktuelle-fakten-zur-photo voltaik-in-deutschland.pdf.
Download


Paper Citation


in Harvard Style

Dienst S., Schmidt J. and Kühne S. (2013). Case Study: Condition Assessment of a Photovoltaic Power Plant using Change-point Analysis . In Proceedings of the 2nd International Conference on Smart Grids and Green IT Systems - Volume 1: SMARTGREENS, ISBN 978-989-8565-55-6, pages 159-164. DOI: 10.5220/0004406801590164


in Bibtex Style

@conference{smartgreens13,
author={Steffen Dienst and Johannes Schmidt and Stefan Kühne},
title={Case Study: Condition Assessment of a Photovoltaic Power Plant using Change-point Analysis},
booktitle={Proceedings of the 2nd International Conference on Smart Grids and Green IT Systems - Volume 1: SMARTGREENS,},
year={2013},
pages={159-164},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004406801590164},
isbn={978-989-8565-55-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Smart Grids and Green IT Systems - Volume 1: SMARTGREENS,
TI - Case Study: Condition Assessment of a Photovoltaic Power Plant using Change-point Analysis
SN - 978-989-8565-55-6
AU - Dienst S.
AU - Schmidt J.
AU - Kühne S.
PY - 2013
SP - 159
EP - 164
DO - 10.5220/0004406801590164