SESGAL Software for Managing Earthquake Risk in Galicia

Carla Iglesias, Eduardo Giráldez, Javier Taboada, Roberto Martínez-Alegría, Isabel Margarida Antunes


According to the laws in place in Spain, the autonomous Community of Galicia (NW Spain) has two zones –Lugo and Ourense– at greater seismic risk. In order to control and minimize the damage to buildings and to population, a Special Civil Protection Plan for Seismic Risk in Galicia (SISMIGAL) has been drawn up, including a software tool specially designed for this purpose. The Galician Seismic Scenario Simulator v1.0 (SESGAL) is based on a geographic information system (GIS) and provided with a comprehensive database of the elements and resources that intervene in the management of an emergency. In addition to the typical functions of GIS, SESGAL incorporates a seismic scenario simulator –which enables the prediction of the effects of an earthquake– and a seismic emergency manager –which provides a tool for addressing the needs of the population in case of a catastrophe. The SESGAL software presented here provides a useful, rapid tool for an effective and efficient response to the damage caused by an earthquake in the Galician territory, managing the means and resources available.


  1. Applied Technology Council (1985). Earthquake damage evaluation data for California, ATC-13. Redwood City, California.
  2. Applied Technology Council (1991). Seismic vulnerability and impact of disruption of lifelines in the conterminous United States, ATC-25. Redwood City. California.
  3. Barranco, L. and Izquierdo, A. (2002). Preliminary rapid estimate of potential earthquake damage in Spain: Simulation of Seismic Scenarios (SES 2002). Dir. Gral. de Protección Civil e Ins. Geogr. Nacional, CD ROM.
  4. Benjamin, J. R., and Cornell, C.A., 1970. Probability, statistics, and decision for civil engineers. McGrawHill, New York.
  5. CAPRA, 2012. Last access: 10.04.2013.
  6. Coburn, A., Spence, R. and Pomonis, A. (1992). Factors determining human casualty levels in earthquakes: mortality prediction in building collapse. Proceedings of the X World Conference on Earthquake Engineering. Madrid (España), 10, 5989-5994.
  7. Dodo, A., Davidson, R.A., Xu, N., Nozick, L.K., 2007. Application of regional earthquake mitigation optimization. Computers & Operations Research, 34 (8), pp. 2478-2494.
  8. Du, P., Chen, J., Chen, C., Liu, Y., Liu, J., Wang, H., Zhang, X., 2012. Environmental risk evaluation to minimize impacts within the area affected by the Wenchuan earthquake. Science of the Total Environment, 419, pp. 16-24.
  9. FEMA, 2003. HAZUS®MH MR4 Earthquake Model User Manual. Department of Homeland Security. Federal Emergency Management Agency. Mitigation Division. Washington, D.C. Available at
  10. González, M., Susagna, T., Goula, X., Roca, A. and Safina, S. (2001). Primera evaluación de la vulnerabilidad sísmica de edificios esenciales: Hospitales y parques de bomberos. Informe del Instituto Cartográfico de Cataluña No: GS-138/00.
  11. Gupta, A., Shah, H.C., 1998. The strategy effectiveness chart: A tool for evaluating earthquake disaster mitigation strategies. Appl. Geography,18(1),pp.55- 67.
  12. Grunthal, G. (1998). European Macroseismic Scale 1998. Conseil de lEurope Cahiers du Centre Europeén de Geodynamique et de Seismologie. Vol. 15.
  13. Hassanzadeh, R., Nedovic- Budic, Z. Alavi Razavi, A., Norouzzadeh, M., Hodhodkian, H., 2013. Interactive approach for GIS-based earthquake scenario development and resource estimation (Karmania hazard model). Computers & Geosciences, 51, pp. 324-338.
  14. López-Fernández, C., Pulgar, J.A., Gallart, J., GlezCortina, J.M., Díaz, J., Ruíz, M., 2004. Seismicity and tectonics in Becerrea-Triacastela area (Lugo, NW Spain). Geogaceta, 36, pp. 51-54.
  15. Maldonado, E., Chio, G., Gómez, I., 2007. Índice de vulnerabilidad sísmica en edificaciones de mampostería basado en opinión de expertos. Ingeniería y Universidad, Pontificia Universidad Javeriana, 11 (2), pp. 149-168.
  16. Maldonado, E., Chio, G., 2009. Estimación de las funciones de vulnerabilidad sísmica en edificaciones en tierra. Ingeniería & Desarrollo, Universidad del Norte, 25, pp. 180-199.
  17. NCSE-02 (2002). Norma de Construcción Sismorresistente: Parte General y Edificación. BOE No. 244 (11 October 2002).
  18. NISEE, 2011. Pacific Earthquake Engineering Research (PEER) Center. Last accessed 10.04.2013.
  19. Tang, A., Wen, A., 2009. An intelligent simulation system for earthquake disaster assessment. Computers & Geosciences, 35 (5), pp. 871-879.
  20. Xunta de Galicia, 2009. Plan Territorial de Emergencias de Galicia (PLATERGA). Available from: rId=127859&name=DLFE-8406.pdf.

Paper Citation

in Harvard Style

Iglesias C., Giráldez E., Taboada J., Martínez-Alegría R. and Margarida Antunes I. (2013). SESGAL Software for Managing Earthquake Risk in Galicia . In Proceedings of the 8th International Joint Conference on Software Technologies - Volume 1: ICSOFT-EA, (ICSOFT 2013) ISBN 978-989-8565-68-6, pages 7-14. DOI: 10.5220/0004433200070014

in Bibtex Style

author={Carla Iglesias and Eduardo Giráldez and Javier Taboada and Roberto Martínez-Alegría and Isabel Margarida Antunes},
title={SESGAL Software for Managing Earthquake Risk in Galicia},
booktitle={Proceedings of the 8th International Joint Conference on Software Technologies - Volume 1: ICSOFT-EA, (ICSOFT 2013)},

in EndNote Style

JO - Proceedings of the 8th International Joint Conference on Software Technologies - Volume 1: ICSOFT-EA, (ICSOFT 2013)
TI - SESGAL Software for Managing Earthquake Risk in Galicia
SN - 978-989-8565-68-6
AU - Iglesias C.
AU - Giráldez E.
AU - Taboada J.
AU - Martínez-Alegría R.
AU - Margarida Antunes I.
PY - 2013
SP - 7
EP - 14
DO - 10.5220/0004433200070014