Adding Recommendations to OLAP Reporting Tool

Natalija Kozmina


In this paper an example of applying the recommendation component of OLAP reporting tool developed and put to operation at the University is presented. To construct report recommendations in the above-mentioned tool content-based methods are employed. Analyzing user activity and taking advantage of data about user preferences for data warehouse schema elements existing reports that potentially may be interesting to the user are distinguished and recommended. The approach for recommending reports is composed of two methods – cold-start and hot-start. The cold-start method is employed, if a user is either new to the system or classified as passive, while the hot-start method is applied for active system users. Both methods are implemented in OLAP reporting tool. The recommendation component of the OLAP reporting tool is presented, and different recommendation modes are described.


  1. Adomavicius G., Manouselis N., Kwon Y.-O. 2011. Multi-Criteria Recommender Systems. In: Ricci F, et al. (eds) Recommender Systems Handbook, Springer, Springer Science+Business Media, Part 5, pp 769-803
  2. Aissi S., Gouider M.S. 2012. Towards the Next Generation of Data Warehouse Personalization System: A Survey and a Comparative Study. International Journal of Computer Science Issues (IJCSI), 9(3-2):561-568
  3. Breese J.S., Heckerman D., Kadie C. 1998. Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proc. of 14th Conference on Uncertainty in Artificial Intelligence (UAI'98), Madison, WI, USA, pp 43-52
  4. Garrigós I., Pardillo J., Mazón J.N., Trujillo J. 2009. A Conceptual Modeling Approach for OLAP Personalization. In: Laender, A.H.F. (ed.) ER 2009. LNCS, Springer, Heidelberg, 5829:401-414
  5. Giacometti A., Marcel P., Negre E., Soulet A. 2009. Query Recommendations for OLAP Discovery Driven Analysis. In: Proc. of 12th ACM Int. Workshop on Data Warehousing and OLAP (DOLAP'09), Hong Kong, pp 81-88
  6. Golfarelli M., Rizzi S. 2009. Expressing OLAP Preferences. In: Winslett, M. (ed.) SSDBM 2009. LNCS, Springer, Heidelberg, 5566:83-91
  7. Jerbi H., Ravat F., Teste O., Zurfluh G. 2009. PreferenceBased Recommendations for OLAP Analysis. In: Proc. of 11th Int. Conf. on Data Warehousing and Knowledge Discovery (DaWaK'09), Linz, Austria, pp 467-478
  8. Kozmina N., Niedrite L. 2010. OLAP Personalization with User-Describing Profiles. In: Forbrig P, Günther H (eds.) BIR 2010. Springer, Heidelberg, LNBIP, 64:188-202
  9. Kozmina N., Niedrite L. 2011. Research Directions of OLAP Personalizaton. In: Proc. of 19th Int. Conf. on Information Systems Development (ISD'10), Springer Science+Business Media, pp 345-356
  10. Kozmina N., Solodovnikova D. 2011. On Implicitly Discovered OLAP Schema-Specific Preferences in Reporting Tool. In: Scientific Journal of Riga Technical University, Computer Science: Applied Computer Systems, 46:35-42
  11. Kozmina N., Solodovnikova D. 2012. Towards Introducing User Preferences in OLAP Reporting Tool. In: Niedrite L, et al. (eds.) BIR 2011 Workshops. Springer, Heidelberg, LNBIP 106:209- 222
  12. Koutrika G., Ioannidis Y. E. 2004. Personalization of Queries in Database Systems. In: Proc. of 20th Int. Conf. on Data Engineering (ICDE'04), Boston, MA, USA, pp 597-608
  13. Maidel V., Shoval P., Shapira B., Taieb-Maimon M. 2010. Ontological Content-based Filtering for Personalised Newspapers: A Method and its Evaluation. Online Information Review, 34(5):729-756, available online: 68-4527&volume=34&issue=5
  14. Makhoul J., Kubala F., Schwartz R., Weischedel R. 1999. Performance Measures for Information Extraction. In: Proc. of DARPA Broadcast News Workshop, Herndon, VA, USA, pp 249-252
  15. Mansmann S., Scholl M.H. 2007. Exploring OLAP Aggregates with Hierarchical Visualization Techniques. In: Proc. of 22nd Annual ACM Symposium on Applied Computing (SAC'07), Multimedia & Visualization Track, Seoul, Korea, pp 1067-1073
  16. Marcel P., Negre E. 2011. A Survey of Query Recommendation Techniques for Data Warehouse Exploration. In: 7èmes journées francophones sur les Entrepôts de Données et l'Analyse en ligne (EDA'11), Clermont-Ferrand, France, B-7:119-134
  17. Rashid A.M., Karypis G., Riedl J. 2005. Influence in Ratings-Based Recommender Systems: An AlgorithmIndependent Approach. In: Proc. of 5th SIAM Int. Conf. on Data Mining, Newport Beach, CA, USA, pp 556-560
  18. Salton G., McGill M. 1983. Introduction to Modern Information Retrieval. McGraw-Hill Inc., New York, NY, USA.
  19. Solodovnikova D. 2007. Data Warehouse Evolution Framework. In: Proc. of Spring Young Researcher's Colloquium on Database and Information Systems (SYRCoDIS'07), Moscow, Russia, available online:
  20. Vozalis E., Margaritis K.G. 2003. Analysis of Recommender Systems Algorithms. In: Proc. of 6th Hellenic European Conference on Computer Mathematics and its Applications (HERCMA'03), Athens, Greece, pp 732-745
  21. Vozalis M., Margaritis K.G. 2004. Enhancing Collaborative Filtering with Demographic Data: The Case of Item-based Filtering. In: Proc. of 4th Int. Conf. on Intelligent Systems Design and Applications (ISDA'04), Budapest, Hungary, pp 361-366.

Paper Citation

in Harvard Style

Kozmina N. (2013). Adding Recommendations to OLAP Reporting Tool . In Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8565-59-4, pages 169-176. DOI: 10.5220/0004439801690176

in Bibtex Style

author={Natalija Kozmina},
title={Adding Recommendations to OLAP Reporting Tool},
booktitle={Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},

in EndNote Style

JO - Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Adding Recommendations to OLAP Reporting Tool
SN - 978-989-8565-59-4
AU - Kozmina N.
PY - 2013
SP - 169
EP - 176
DO - 10.5220/0004439801690176