An Ontology-based Method for Sparsity Problem in Tag Recommendation

Endang Djuana, Yue Xu, Yuefeng Li, Audun Josang, Clive Cox


Tags or personal metadata for annotating web resources have been widely adopted in Web 2.0 sites. However, as tags are freely chosen by users, the vocabularies are diverse, ambiguous and sometimes only meaningful to individuals. Tag recommenders may assist users during tagging process. Its objective is to suggest relevant tags to use as well as to help consolidating vocabulary in the systems. In this paper we discuss our approach for providing personalized tag recommendation by making use of existing domain ontology generated from folksonomy. Specifically we evaluated the approach in sparse situation. The evaluation shows that the proposed ontology-based method has improved the accuracy of tag recommendation in this situation.


  1. Adomavicius, G. and Tuzhilin, A. (2005). Toward the next generation of recommender systems: A survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6):734-749.
  2. Baruzzo, A., Dattolo, A., Pudota, N., and Tasso, C. (2009). Recommending new tags using domain-ontologies. In Web Intelligence/IAT Workshops, pages 409-412. IEEE.
  3. Batagelj, V. and Zaversnik, M. (2002). Generalized cores. cite arxiv:cs.DS/0202039.
  4. Brooks, C. H. and Montanez, N. (2006). Improved annotation of the blogosphere via autotagging and hierarchical clustering. In Proceedings of the 15th international conference on World Wide Web, pages 625-632. ACM.
  5. Djuana, E., Xu, Y., Li, Y., and Cox, C. (2012). Personalization in tag ontology learning for recommendation making. In 14th International Conference on Information Integration and Web-based Applications & Services (iiWAS 2012), pages 368-377. ACM.
  6. Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Language, Speech, and Communication Series. MIT Press.
  7. Golder, S. A. and Huberman, B. A. (2006). Usage patterns of collaborative tagging systems. Journal of Information Science, 32(2):198-208.
  8. Gruber, T. R. (1993). A translation approach to portable ontology specifications. Knowledge Acquisition, 5(2):199-220.
  9. Hotho, A., Jschke, R., Schmitz, C., and Stumme, G. (2006). Information retrieval in folksonomies: Search and ranking. In The Semantic Web: Research and Applications, pages 411-426. Springer Berlin Heidelberg.
  10. Jäschke, R., Hotho, A., Mitzlaff, F., and Stumme, G. (2012). Challenges in tag recommendations for collaborative tagging systems. In Recommender Systems for the Social Web, pages 65-87. Springer Berlin Heidelberg.
  11. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., and Stumme, G. (2008). Tag recommendations in social bookmarking systems. AI Commun., 21(4):231- 247.
  12. Jiang, J. J. and Conrath, D. W. (1997). Semantic similarity based on corpus statistics and lexical taxonomy. In Proceedings of International Conference Research on Computational Linguistics (ROCLING X'1997).
  13. Liang, H., Xu, Y., Li, Y., Nayak, R., and Tao, X. (2010). Connecting users and items with weighted tags for personalized item recommendations. In Proceedings of the 21st ACM conference on Hypertext and hypermedia, HT 7810, pages 51-60. ACM.
  14. Lipczak, M., Hu, Y., Kollet, Y., and Milios, E. (2009). Tag sources for recommendation in collaborative tagging systems. In ECML PKDD Discovery Challenge 2009 (DC09), volume 497 of, pages 157- 172.
  15. Marinho, L. and Schmidt-Thieme, L. (2008). Collaborative tag recommendations. In Data Analysis, Machine Learning and Applications, pages 533-540. Springer Berlin Heidelberg.
  16. Marlow, C., Naaman, M., Boyd, D., and Davis, M. (2006). Ht06, tagging paper, taxonomy, flickr, academic article, to read. In Proceedings of the seventeenth conference on Hypertext and hypermedia, pages 31-40. ACM.
  17. Mathes, A. (2004). Folksonomies - cooperative classification and communication through shared metadata. diated-communication/folksonomies.html. Accessed: 2013-01-25.
  18. Mika, P. (2007). Ontologies are us: A unified model of social networks and semantics. Web Semantics: Science, Services and Agents on the World Wide Web, 5(1):5- 15.
  19. Musto, C., Narducci, F., Lops, P., and Gemmis, M. (2010). Combining collaborative and content-based techniques for tag recommendation. In E-Commerce and Web Technologies, pages 13-23. Springer Berlin Heidelberg.
  20. Navigli, R., Velardi, P., and Gangemi, A. (2003). Ontology learning and its application to automated terminology translation. IEEE Intelligent Systems, 18(1):22-31.
  21. Pedersen, T., Patwardhan, S., and Michelizzi, J. (2004). Wordnet: : Similarity - measuring the relatedness of concepts. In AAAI, pages 1024-1025. AAAI Press.
  22. Preisach, C., Balby Marinho, L., and Schmidt-Thieme, L. (2010). Semi-supervised tag recommendation - using untagged resources to mitigate cold-start problems. In Advances in Knowledge Discovery and Data Mining, pages 348-357. Springer Berlin Heidelberg.
  23. Schein, A. I., Popescul, A., Ungar, L. H., and Pennock, D. M. (2002). Methods and metrics for cold-start recommendations. In Proceedings of the 25th annual international ACM SIGIR conference on Research and development in information retrieval, pages 253-260. ACM.
  24. Sigurbjörnsson, B. and van Zwol, R. (2008). Flickr tag recommendation based on collective knowledge. In Proceedings of the 17th international conference on World Wide Web, pages 327-336. ACM.
  25. Symeonidis, P., Nanopoulos, A., and Manolopoulos, Y. (2008). Tag recommendations based on tensor dimensionality reduction. In Proceedings of the 2008 ACM conference on Recommender systems, pages 43-50. ACM.
  26. Tatu, M., Srikanth, M., and D'Silva, T. (2008). Rsdc'08: Tag recommendations using bookmark content. In Proceedings of the ECML/PKDD 2008 Discovery Challenge Workshop, pages 96-107.

Paper Citation

in Harvard Style

Djuana E., Xu Y., Li Y., Josang A. and Cox C. (2013). An Ontology-based Method for Sparsity Problem in Tag Recommendation . In Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8565-60-0, pages 467-474. DOI: 10.5220/0004439904670474

in Bibtex Style

author={Endang Djuana and Yue Xu and Yuefeng Li and Audun Josang and Clive Cox},
title={An Ontology-based Method for Sparsity Problem in Tag Recommendation},
booktitle={Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},

in EndNote Style

JO - Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - An Ontology-based Method for Sparsity Problem in Tag Recommendation
SN - 978-989-8565-60-0
AU - Djuana E.
AU - Xu Y.
AU - Li Y.
AU - Josang A.
AU - Cox C.
PY - 2013
SP - 467
EP - 474
DO - 10.5220/0004439904670474