Evolutionary Learning of Business Process Models from Legacy Systems using Incremental Process Mining

André Cristiano Kalsing, Cirano Iochpe, Lucinéia Heloisa Thom, Gleison Samuel do Nascimento

Abstract

Incremental Process Mining is a recent research area that brings flexibility and agility to discover process models from legacy systems. Some algorithms have been proposed to perform incremental mining of process models. However, these algorithms do not provide all aspects of evolutionary learning, such as update and exclusion of elements from a process model. This happens when updates in the process definition occur, forcing a model already discovered to be refreshed. This paper presents new techniques to perform incremental mining of execution logs. It enables the discovery of changes in the process instances, keeping the discovered process model synchronized with the process being executed. Discovery results can be used in various ways by business analysts and software architects, e.g. documentation of legacy systems or for re-engineering purposes.

References

  1. Kalsing, A. C., Iochpe, C., Thom, L. H.: “An Incremental Process Mining Algorithm”. In ICEIS (1), pp. 263- 268 (2010).
  2. Kalsing, A. C., Nascimento, G. S., Iochpe, C., Thom, L. H.: “An Incremental Process Mining Approach to Extract Knowledge from Legacy Systems”. In 14th IEEE EDOC 2010, pp. 79-88 (2010b).
  3. Cohen, J., “A coefficient of agreement for nominal scales, Educational and Psychological Measurement”. Vol. 20 (1), pp. 37-46 (1960)
  4. Van Dongen, J., Medeiros, A. K., Verbeek, H., Weijters, A. J. M. M., van der AALST, W. M. P.: “The ProM framework: A new era in process mining tool support”. Applications and Theory of Petri Nets, pp. 1105-1116, Springer (2005)
  5. Ma, H., Tang, Y., Wu, L.: “Incremental Mining of Processes with Loops”. International Journal on Artificial Intelligence Tools, Vol. 20, Number 1, pp. 221-235 (2011)
  6. Sun, W., Li, T., Peng, W. Sun, T.: “Incremental Workflow Mining with Optional Patterns and Its Application to Production Printing Process”. International Journal of Intelligent Control and Systems, Vol. 12, Number 1, pp. 45-55 (2007)
  7. Van der Aalst, W. M. P., Weijters, A. J. M. M., Maruster, L.: “Workflow Mining: discovering process models from event logs”. IEEE Transactions on Knowledge and Data Engineering, 16 (9), pp. 1128-1142 (2004)
  8. Gunther, C.W., Rinderle-Ma, S., Reichert, M., Van der Aalst, W.M.P.: “Using process mining to learn from process changes in evolutionary systems. International Business Process Integration and Management”, Vol. 3, N 1, pp. 61-78, Inderscience (2008)
  9. Weijters, A. J. M. M., Van der Aalst, W.M.P., Medeiros, A. K.: “Process Mining with the Heuristics Miner Algorithm”. Eindhoven, Tech. Rep. WP, vol. 166 (2006).
  10. Rozinat, A., Medeiros, A. K., Gunther, C.W., Weijters, A. J. M. M., Van der Aalst, W.M.P.: “Towards an evaluation framework for process mining algorithms”. BPM Center Report BPM-07-06, BPMcenter. Org (2007)
  11. Burattin, A., Sperduti, A.: “PLG: a Framework for the Generation of Business Process Models and their Execution Logs”. In Proceeding BPI Workshop 2010. Stevens Institute of Technology; Hoboken, New Jersey, USA; September 13 (2010)
  12. Dijkman, R., Dumas, M., García-Bañuelos, L.: “Graph matching algorithms for business process model similarity search”. Business Process Management Journal, pp. 48-63, Springer (2009)
  13. Sneed, H. M., Erdos K., “Extracting business rules from source code,” Proceeding of the Fourth IEEE Workshop on Program Comprehension, pp. 240-247, 1996.
  14. Wang C., Zhou, Y., Chen, J., “Extracting Prime Business Rules from Large Legacy System,” International Conference on Computer Science and Soft. Engineering, vol 2, pp. 19-23, 2008.
  15. Bose, R. P., Van der Aalst, W. M. P., Zliobaité, I., Pechenizkiy, M.: “Handling concept drift in process mining”. Conference on Advanced Information Systems Engineering, CAISE'11, pp 391-405. London, UK, 2011.
  16. Landis, J. R., Koch, G. G., “The measurement of observer agreement for categorical data,” International Biometric Society, vol. 33. pp. 159-174, 1977.
  17. Luengo, D., Sepúlveda, M., “Applying clustering in process mining to find different versions of a business process that changes over time”, Business Process Management Workshops, pp 153-158, Springer, 2012.
Download


Paper Citation


in Harvard Style

Cristiano Kalsing A., Iochpe C., Heloisa Thom L. and Samuel do Nascimento G. (2013). Evolutionary Learning of Business Process Models from Legacy Systems using Incremental Process Mining . In Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 2: ICEIS, ISBN 978-989-8565-60-0, pages 58-69. DOI: 10.5220/0004446200580069


in Bibtex Style

@conference{iceis13,
author={André Cristiano Kalsing and Cirano Iochpe and Lucinéia Heloisa Thom and Gleison Samuel do Nascimento},
title={Evolutionary Learning of Business Process Models from Legacy Systems using Incremental Process Mining},
booktitle={Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 2: ICEIS,},
year={2013},
pages={58-69},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004446200580069},
isbn={978-989-8565-60-0},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 2: ICEIS,
TI - Evolutionary Learning of Business Process Models from Legacy Systems using Incremental Process Mining
SN - 978-989-8565-60-0
AU - Cristiano Kalsing A.
AU - Iochpe C.
AU - Heloisa Thom L.
AU - Samuel do Nascimento G.
PY - 2013
SP - 58
EP - 69
DO - 10.5220/0004446200580069