HyFOM Reasoner: Hybrid Integration of Fuzzy Ontology and Mamdani Reasoning

Cristiane A. Yaguinuma, Walter C. P. Magalhães Jr., Marilde T. P. Santos, Heloisa A. Camargo, Marek Reformat


Some real-world applications require representation and reasoning regarding imprecise or vague information. In this context, the appropriate combination of fuzzy ontologies and Mamdani fuzzy inference systems can provide meaningful inferences involving fuzzy rules and numerical property values. In general, this knowledge is not obtained through typical fuzzy ontology reasoning and can be relevant for some ontology reasoning tasks that depend on numerical property values. To address this issue, this paper proposes the HyFOM reasoner, which provides a hybrid integration of fuzzy ontology and Mamdani reasoning. A real-world case study involving the domain of food safety is presented, including comparative results with a state-of-the-art fuzzy description logic reasoner.


  1. Acampora, G. and Loia, V. (2005). Fuzzy control interoperability and scalability for adaptive domotic framework. IEEE Trans. Industrial Informatics, 1(2):97- 111.
  2. Angelov, P. and Yager, R. (2012). A new type of simplified fuzzy rule-based system. International Journal of General Systems, 41(2):163-185.
  3. Bobillo, F., Delgado, M., Gómez-Romero, J., and López, E. (2009). A semantic fuzzy expert system for a fuzzy balanced scorecard. Expert Systems with Applications, 36(1):423-433.
  4. Bobillo, F. and Straccia, U. (2008). fuzzyDL: An expressive fuzzy description logic reasoner. In International Conference on Fuzzy Systems, pages 923-930, Hong Kong, China. IEEE Computer Society.
  5. Bobillo, F. and Straccia, U. (2009). Fuzzy description logics with general t-norms and datatypes. Fuzzy Sets and Systems, 160(23):3382 - 3402.
  6. Bobillo, F. and Straccia, U. (2011). Fuzzy ontology representation using OWL 2. International Journal of Approximate Reasoning, 52(7):1073 - 1094.
  7. Bragaglia, S., Chesani, F., Ciampolini, A., Mello, P., Montali, M., and Sottara, D. (2010). An hybrid architecture integrating forward rules with fuzzy ontological reasoning. In Hybrid Artificial Intelligence Systems, pages 438-445. Springer Berlin / Heidelberg.
  8. de Magalha˜es Junior, W. C. P., Bonnet, M., Feij, L. D., and Santos, M. T. P. (2012). Risk-off method: Improving data quality generated by chemical risk analysis of milk. In Cases on SMEs and Open Innovation: Applications and Investigations, pages 40-64. IGI Global.
  9. de Magalhes Junior, W. C. P. (2011). Chem-risk approach: assessment, management and communication of chemical risks in food by employing knowledge discovery in databases, fuzzy logics and ontologies. Master's thesis, Federal University of So Carlos. [in portuguese].
  10. de Maio, C., Fenza, G., Furno, D., Loia, V., and Senatore, S. (2012). OWL-FC: An upper ontology for semantic modeling of fuzzy control. Soft Computing, 16(7):1153-1164.
  11. Guillaume, S. and Charnomordic, B. (2012). Fuzzy inference systems: An integrated modeling environment for collaboration between expert knowledge and data using FisPro. Expert Systems with Applications, 39(10):8744 - 8755.
  12. Horridge, M. and Bechhofer, S. (2011). The OWL API: A Java API for OWL ontologies. Semantic Web, 2(1):11-21.
  13. Huang, H.-D., Acampora, G., Loia, V., Lee, C.-S., and Kao, H.-Y. (2011). Applying FML and fuzzy ontologies to malware behavioural analysis. In IEEE International Conference on Fuzzy Systems, pages 2018-2025.
  14. Lee, C.-S., Wang, M.-H., Acampora, G., Hsu, C.-Y., and Hagras, H. (2010). Diet assessment based on type2 fuzzy ontology and fuzzy markup language. International Journal of Intelligent Systems, 25(12):1187- 1216.
  15. Lukasiewicz, T. and Straccia, U. (2008). Managing uncertainty and vagueness in description logics for the semantic web. Journal of Web Semantics, 6(4):291-308.
  16. Mamdani, E. H. and Assilian, S. (1975). An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies, 7(1):1- 13.
  17. Marca, D. A. and McGowan, C. L. (1987). SADT: Structured Analysis and Design Technique. McGraw-Hill, Inc., New York, NY, USA.
  18. Motik, B., Shearer, R., and Horrocks, I. (2009). Hypertableau Reasoning for Description Logics. Journal of Artificial Intelligence Research, 36:165-228.
  19. Orchard, R. (2001). Fuzzy Reasoning in Jess: The FuzzyJ Toolkit and Fuzzy Jess. In International Conference on Enterprise Information Systems, pages 533-542, Setubal, Portugal.
  20. Straccia, U. (2006). A fuzzy description logic for the semantic web. In Sanchez, E., editor, Fuzzy Logic and the Semantic Web, Capturing Intelligence, pages 73- 90. Elsevier.
  21. Wlodarczyk, T. W., O'Connor, M., Rong, C., and Musen, M. (2010). SWRL-F: A fuzzy logic extension of the Semantic Web Rule Language. In International Workshop on Uncertainty Reasoning for the Semantic Web (URSW), Shanghai, China. Springer.
  22. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3):338-353.

Paper Citation

in Harvard Style

A. Yaguinuma C., C. P. Magalhães Jr. W., T. P. Santos M., A. Camargo H. and Reformat M. (2013). HyFOM Reasoner: Hybrid Integration of Fuzzy Ontology and Mamdani Reasoning . In Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8565-59-4, pages 370-378. DOI: 10.5220/0004452803700378

in Bibtex Style

author={Cristiane A. Yaguinuma and Walter C. P. Magalhães Jr. and Marilde T. P. Santos and Heloisa A. Camargo and Marek Reformat},
title={HyFOM Reasoner: Hybrid Integration of Fuzzy Ontology and Mamdani Reasoning},
booktitle={Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},

in EndNote Style

JO - Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - HyFOM Reasoner: Hybrid Integration of Fuzzy Ontology and Mamdani Reasoning
SN - 978-989-8565-59-4
AU - A. Yaguinuma C.
AU - C. P. Magalhães Jr. W.
AU - T. P. Santos M.
AU - A. Camargo H.
AU - Reformat M.
PY - 2013
SP - 370
EP - 378
DO - 10.5220/0004452803700378