Gait Optimization of a Rolling Knee Biped at Low Walking Speeds

Mathieu Hobon, Nafissa Lakbakbi Elyaaqoubi, Gabriel Abba

Abstract

This paper addresses an optimization problem of trajectories for a biped robot with a new modelled structure of knees which is called rolling knee (RK). The first part of article is to present the new kinematic knee on a biped robot and the different models used to know the dynamic of the robot during a walking step. The gait is cyclic and simplified by a Single Support Phase (SSP) followed by an impact. The second part is a comparison of the influence of the gait trajectory on the control, using cubic spline functions as well as the {\it B\'ezier} functions. The energetic criterion is minimized through optimization while using the simplex algorithm and the Lagrange penalty functions to meet the constraints of stability and deflection of mobile foot. The main result is the using of Bézier functions permit to improve the energy gain in slow walking speeds. These trajectories permit to the biped robot to walk progressively without energy disturbance unlike those with cubic spline functions.

References

  1. Banno, Y., Harata, Y., Taji, K., and Uno, Y. (2009). Optimal trajectory design for parametric excitation walking. In 2009 IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS 2009, pages 3202-3207.
  2. Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins, J., and Kanade, T. (2005). Footstep planning for the honda asimo humanoid. In Proceedings - IEEE International Conference on Robotics and Automation, volume 2005, pages 629-634.
  3. Chevallereau, C., Grizzle, J., and Shih, C.-L. (2009). Asymptotically stable walking of a five-link underactuated 3-d bipedal robot. IEEE Transactions on Robotics, 25(1):37-50.
  4. Evrard, P., Gribovskaya, E., Calinon, S., Billard, A., and Kheddar, A. (2009). Teaching physical collaborative tasks: Object-lifting case study with a humanoid. In 9th IEEE-RAS International Conference on Humanoid Robots, HUMANOIDS09, pages 399-404.
  5. Gini, G., Scarfogliero, U., and Folgheraiter, M. (2007). Human-oriented biped robot design: Insights into the development of a truly anthropomorphic leg. In Proceedings - IEEE International Conference on Robotics and Automation, pages 2910-2915.
  6. Grizzle, J., Abba, G., and Plestan, F. (2001). Asymptotically stable walking for biped robots: Analysis via systems with impulse effects. IEEE Transactions on Automatic Control, 46(1):51-64.
  7. Hamon, A. and Aoustin, Y. (2010). Cross four-bar linkage for the knees of a planar bipedal robot. In 10th IEEERAS International Conference on Humanoid Robots, Humanoids 2010, pages 379-384.
  8. Hobon, M., Lakbakbi Elyaaqoubi, N., and Abba, G. (2011). Quasi Optimal Gait of a Biped Robot with a Rolling Knee Kinematic. In IFAC 18th World Congress 2011, pages 11580-11587, Milano, Italy.
  9. Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., and Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. In Proceedings - IEEE International Conference on Robotics and Automation, volume 2, pages 1620-1626.
  10. Khalil, W. and Dombre, E. (2002). Modeling, identification and control of robots. Bristol, PA.
  11. Lagarias, J. C., Reeds, J. A., Wright, M. H., and Wright, P. E. (1998). Convergence properties of the neldermead simplex method in low dimensions. SIAM J. Optim., 9:112-147.
  12. Pfeiffer, F. and Glocker, C. (1996). Multibody Dynamics with Unilateral Contacts. Wiley, New York.
  13. Sabourin, C. and Bruneau, O. (2005). Robustness of the dynamic walk of a biped robot subjected to disturbing external forces by using cmac neural networks. Robotics and Autonomous Systems, 51(2-3):81-89.
  14. Scheint, M., Sobotka, M., and Buss, M. (2008). Compliance in gait synthesis: Effects on energy and gait. In 2008 8th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2008, pages 259-264.
  15. Spong, M. and Vidyasagar, M. (1991). Robot dynamics and control. John Wiley and Sons, New-York.
  16. Tlalolini, D., Chevallereau, C., and Aoustin, Y. (2011). Human-like walking: Optimal motion of a bipedal robot with toe-rotation motion. IEEE/ASME Transactions on Mechatronics, 16(2):310-320.
  17. Van Oort, G., Carloni, R., Borgerink, D., and Stramigioli, S. (2011). An energy efficient knee locking mechanism for a dynamically walking robot. In Proceedings - IEEE International Conference on Robotics and Automation, pages 2003-2008.
  18. Wang, T., Chevallereau, C., and Rengifo, C. F. (2012). Walking and steering control for a 3d biped robot considering ground contact and stability. Robotics and Autonomous Systems, 60(7):962-977.
  19. Westervelt, E. R., Grizzle, J., and Koditschek, D. E. (2001). Hybrid zero dynamics of planar biped walkers. IEEE Transactions on Automatic Control, 48:42-56.
Download


Paper Citation


in Harvard Style

Hobon M., Lakbakbi Elyaaqoubi N. and Abba G. (2013). Gait Optimization of a Rolling Knee Biped at Low Walking Speeds . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-71-6, pages 207-214. DOI: 10.5220/0004457402070214


in Bibtex Style

@conference{icinco13,
author={Mathieu Hobon and Nafissa Lakbakbi Elyaaqoubi and Gabriel Abba},
title={Gait Optimization of a Rolling Knee Biped at Low Walking Speeds},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2013},
pages={207-214},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004457402070214},
isbn={978-989-8565-71-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Gait Optimization of a Rolling Knee Biped at Low Walking Speeds
SN - 978-989-8565-71-6
AU - Hobon M.
AU - Lakbakbi Elyaaqoubi N.
AU - Abba G.
PY - 2013
SP - 207
EP - 214
DO - 10.5220/0004457402070214