Three Dimensional Localisation in Underwater Swarms through a Kalman Approach

Fabio Fratichini, Stefano Chiesa, Sergio Taraglio

Abstract

A three dimensional localisation algorithm for a swarm of underwater vehicles is presented. The proposed approach is grounded on an extended Kalman filter (EKF) scheme used to fuse some proprioceptive data such as the vessel’s speed and some esteroceptive measurement such as the time of flight (TOF) sonar distance of the companion vessels. The results of several simulations are presented. Some considerations about the available underwater bandwidth and the communication needed by the approach are discussed.

References

  1. Fox D., Burgard W., Kruppa H., and Thrun S., 1999. Collaborative multirobot localization, in Proc. 23rd Annual German Conf. Artificial Intelligence (KI), Bonn, Germany, pp. 255-266.
  2. Fox D., Burgard W., Kruppa H., and Thrun S., 2000. A probabilistic approach to collaborative multi-robot localization, Autonomous Robots, 8(3), pp. 325-344.
  3. Huang G. P., Trawny N., Mourikis A. I., Roumeliotis S. I., 2011. Observability-based consistent EKF estimators for multi-robot cooperative localization, Autonomous Robots, 30, (1), pp 99-122.
  4. Kurazume R., Nagata S., Hirose S., 1994. Cooperative positioning with multiple robots, in Proc. 1994 IEEE Int. Conf. Robotics and Automation, Los Alamitos, CA, vol. 2, pp. 1250-1257.
  5. Kurazume R., Nagata S., Hirose S., 1996. Study on cooperative positioning system (basic principle and measurement experiment), in Proc. 1996 IEEE Int. Conf. Robotics and Automation, Minneapolis, MN, vol. 2, pp. 1421-1426.
  6. Martinelli A., Pont F., Siegwart R., 2005. Multi-Robot Localization Using Relative Observations, in Proc. 2005 IEEE Int. Conf. Robotics and Automation, Barcelona, Spain, pp. 2798-2802.
  7. Olfati-Saber R., 2007. Distributed Kalman filtering for sensor networks, in Proc. Of the 46th IEEE Conf. on Decision and Control, pp 5492-5498.
  8. Rekleitis I. M., Dudek G., Milios E. E., 2002. Multi-robot cooperative localization: a study of trade-offs between efficiency and accuracy, in Proc. of International Conference on Intelligent Robot and Systems (IROS02), Lausanne, Switzerland, vol. 3, pp. 2690- 2695.
  9. Roumeliotis S. I., 2000. Robust mobile robot localization: from single-robot uncertainties to multi robot interdependencies, Ph.D. dissertation, Elec. Eng. Dept., Univ. Southern California, Los Angeles, CA.
  10. Roumeliotis S. I. and Bekey G. A., 2002. Distributed Multirobot Localization, IEEE Transaction On Robotics And Automation, 18,(5), pp. 781-795.
  11. Thrun S., Fox D. and Burgard W., 2000. Monte Carlo localization with mixture proposal distribution, in Proc. AAAI Nat. Conf. Artificial Intelligence, Austin, TX, USA, pp. 859-865.
Download


Paper Citation


in Harvard Style

Fratichini F., Chiesa S. and Taraglio S. (2013). Three Dimensional Localisation in Underwater Swarms through a Kalman Approach . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-71-6, pages 215-221. DOI: 10.5220/0004457502150221


in Bibtex Style

@conference{icinco13,
author={Fabio Fratichini and Stefano Chiesa and Sergio Taraglio},
title={Three Dimensional Localisation in Underwater Swarms through a Kalman Approach},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2013},
pages={215-221},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004457502150221},
isbn={978-989-8565-71-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Three Dimensional Localisation in Underwater Swarms through a Kalman Approach
SN - 978-989-8565-71-6
AU - Fratichini F.
AU - Chiesa S.
AU - Taraglio S.
PY - 2013
SP - 215
EP - 221
DO - 10.5220/0004457502150221