Identification of Orientation Dynamics of Miniature Helicopter in Hover Mode

Damian Vigouroux, Fares Beainy, Sesh Commuri

Abstract

Reliable operation of helicopters in hover mode is essential for carrying out missions of surveillance, reconnaissance, and deployment of communication networks in disaster hit areas, among many others. Achieving autonomous operation in hover mode requires the development of robust model-based controllers. In this paper, the use of linear and nonlinear models to identify the orientation dynamics of a small scale helicopter is addressed. A linear architecture that combines the input-output dynamics and perturbation-output dynamics is introduced in this paper. In contrast to the linear models that have been reported in the literature, no assumptions about decoupled roll-pitch-yaw axes are made in the proposed approach. The nonlinear model of orientation dynamics is identified using artificial recurrent neural networks. Verification of these models is performed using actual data collected during the flight of the helicopter. The results show that incorporating the perturbation dynamics in the model can result in a description that can accurately predict the dynamics during actual flight conditions.

References

  1. Abbeel, P., Coates, A. & Ng, A. Y. (2010). Autonomous Helicopter Aerobatics through Apprenticeship Learning. International Journal of Robotics Research, 1-31.
  2. Beainy, F., Mai, A. & Commuri, S. (2009). Unmanned Aerial Vehicles operational requirements and faulttolerant robust control in level flight Control and Automation, 2009. MED 7809. 17th Mediterranean Conference on Thessaloniki, Greece. IEEE, 700-705.
  3. Bejar, M., Ollero, A. & Cuesta, F. (2007). Modeling and Control of Autonomous Helicopters. Advances in Control Theory and Applications. Berlingerlin / Heidelberg, Germany: Springer.
  4. Budiyono, A. S., T.; Lesmana, H. (2007). First Principle Approach to Modeling of Small Scale Helicopter. International Conference on Intelligent Unmanned Systems, Singapore. IEEE,
  5. Deboucha, A. & Taha, Z. (2010). Identification and Control of a Small-Scale Helicopter. Applied Physics and Engineering (Springer), 978-985.
  6. Demuth, H. & Beale, M. (1998). Neural Network Toolbox: User's Guide, Version 3.0. MA, USA: The MathWorks Inc.
  7. Gessow, G. & Myers, A. (1985). Aerodynamics of the Helicopter, United States of America.
  8. Harbick, K., Montgomery, J. & Sukhatme, G. (2004). Planar Spline Trajectory Following for an Autonomous Helicopte. Journal of Advanced Computational Intelligence - Computational Intelligence in Robotics and Automation, 8, 237-242.
  9. He, Y., Pei, H., Sun, T. & Zhou, H. (2011). Modeling, Identification and Robust H8 Static Output Feedback Control of Lateral Dynamics of a Miniature Helicopter Robotics, Automation and Mechatronics (RAM), 2011 IEEE Conference on, Qindao, China. IEEE, 310-315.
  10. Lidstone, C. 2003. The Gimballed Helicopter Testbed. Master of Science, University of Toronto.
  11. Ljung, L. (1988). System Identification Toolbox For use with MATLAB, MA, USA, The MathWorks, Inc.
  12. Mettler, B., Tischler, M. & Kanade, T. (1999). System Identification of Small-Size Unmanned Helicopter Dynamics. 55th American Helicopter Society, Montreal, Canada.
  13. Morris, J., Nieuwstadt, M. & Bendotti, P. (1994). Identification and Control of a Model Helicopter in Hover. American Control Conference, Baltimore, Maryland. 1238-1241.
  14. Padfield, G. (2007). Helicopter Flight Dynamics, The Theory and Application of Flying Qualities and Simulation Modeling, Blacksburg, Virginia, United States of America, American Institute of Aeronautics and Astronautics, Inc.
  15. Putro, E., Budiyono, A., Yoon, K. & Kim, D. (2009). Modeling of Unmaned Small Scale Rotorcraft based on Neural Network Identification. International Conference on Robotics and Biomedics, Bangkok. 1938-1943.
  16. Raptis, A. & Valavanis, P. (2009). System Identification and Discrete Nonlinear Control
  17. of Miniature Helicopters Using Backstepping. Journal of Intelligent and Robotic Systems (Springer), 55, 223- 243.
  18. Remple, M. T. a. R. (2007). Aircraft and Rotorcraft System Identification, Blacksburg, Virginia, United States of America, American Institute of Aeronautics and Astronautics, Inc.
  19. Shin, J., Nonami, K., Fujiwara, D. & Hazawa, K. (2005). Model-based Optimal Attitude and Positioning Control of Small-Scale Unmanned Helicopter. Robotica, 23, 51-63.
  20. Song, B. M., J.; Huang, H.; Liu, Y.; Fan, C. (2010). Nonlinear robust control of a small-scale helicopter on a test bench. International Journal of Control, 83, 761-775.
  21. Suresh, S., Vijaya Kumar, M., Omkar, S. N., Mani, V. & Smpath, P. (2002). Neural Networks Based Identification of Helicopter Dynamics Using Flight Data. Neural Information Processing, 2002. ICONIP 7802. Proceedings of the 9th International Conference on, Singapore. IEEE, 10-14.
  22. Taha, Z., Deboucha, A. & Dahari, M. (2010). Small-Scale Helicopter System Identification Model Using Recurrent Neural Networks. TENCON, Fukuoka. IEEE, 1393-1397.
  23. Wang, G., Zhu, J., Yang, C. & Xia, H. (2011a). System Identification for Helicopter Yaw Dynamic Modelling. International Conference on Computer Research and Development (ICCRD), Shanghai. IEEE 54-57.
  24. Wang, G., Zhu, J. & Zia, H. (2011b). Model Identification and Control of a Small-Scale Unmanned Helicopter. International Conference on Computer Science & Education, Singapore. IEEE, 933 - 937
Download


Paper Citation


in Harvard Style

Vigouroux D., Beainy F. and Commuri S. (2013). Identification of Orientation Dynamics of Miniature Helicopter in Hover Mode . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-71-6, pages 251-258. DOI: 10.5220/0004477102510258


in Bibtex Style

@conference{icinco13,
author={Damian Vigouroux and Fares Beainy and Sesh Commuri},
title={Identification of Orientation Dynamics of Miniature Helicopter in Hover Mode},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2013},
pages={251-258},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004477102510258},
isbn={978-989-8565-71-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - Identification of Orientation Dynamics of Miniature Helicopter in Hover Mode
SN - 978-989-8565-71-6
AU - Vigouroux D.
AU - Beainy F.
AU - Commuri S.
PY - 2013
SP - 251
EP - 258
DO - 10.5220/0004477102510258