A Bayesian Approach to Modeling Dynamical Systems in the Social Sciences

Shyam Ranganathan, Viktoria Spaiser, David J. T. Sumpter

Abstract

The paper presents a new modeling approach using longitudinal or panel data to study social phenomena and to make predictions of dynamic changes. While the most common way in social sciences to study the relations between variables is using regression, our modeling approach describes the changes in variables as a function of all included variables, using differential equations with polynomial terms that capture linear and/or nonlinear effects. The mathematical models represented by these differential equations are derived directly from data. The models can then be run forward to forecast future changes. A two-step model-fitting approach is applied to identify the best-fit models and included visualisation methods based on phase portraits help to illustrate modeling results. We show this approach on an example relating democracy to economic growth.

References

  1. Allison, P. (2005). Fixed Effects Regression Methods for Longitudinal Data. SAS Publishing.
  2. Amemiya, T. (1985). Advanced econometrics. Blackwell, Oxford.
  3. Andersen, R. (2007). Modern Methods for Robust Regression. SAGE, London.
  4. Ashimov, A. A., Sultanov, B. T., Adilov, Z. M., Borovskiy, Y. V., Novikov, D. A., Nizhegorodtsev, R. M., and Ashimov, A. A. (2011). Macroevonomic Analysis and Economic Policy Based on Parametric Control. Springer.
  5. Barro, R. J. (1996). Democracy and growth. Journal of Economic Growth, 1.
  6. Barro, R. J. (1999). Determinants of democracy. Journal of Political Economy, 107.
  7. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer.
  8. Boix, C. and Stokes, S. (2003). Endogenous democratisation. World Politics, 55.
  9. Coleman, J. S. (1964). Introduction to Mathematical Sociology. Free Press of Glencoe/Collier Macmillan.
  10. de Marchi, S. (2005). Computation and Mathematical Modeling in the Social Sciences. Cambridge University Press.
  11. Diamond, L. and Marks, G. (1992). Reexamining Democracy. SAGE.
  12. Garson, G. D. (2013). Two-Stage Least Square Regression. Statistical Associates Publishers.
  13. Gelman, A. (2004). Exploratory data analysis for complex models. Journal of Computational and Graphical Statistics, 13 (4).
  14. Krieckhaus, J. (2003). The regime debate revisited: A sensitive analysis of democracy's economic effect. British Journal of Political Science, 34.
  15. Laird, N. M. and Ware, J. H. (1982). Random-effects models for longitudinal data. Biometrics, 38 (4).
  16. Lewis-Beck, M. S. (1995). Data Analysis: An Introduction. SAGE, London.
  17. Ley, E. and Steel, M. F. (2009). On the effect of prior assumptions in bayesian model averaging with applications to growth regression. Journal of Applied Econometrics, 24:651-674.
  18. Lipset, S. M. (1959). Some social requisites of democracy: Economic development and political legitimacy. American Political Science Review, 53.
  19. Menard, S. (2001). Applied Logistic Regression Analysis. SAGE, London.
  20. Ostrom, C. W. (1990). Time Series Analysis: Regression Techniques. SAGE, London.
  21. Ranganathan, S., Mann, R. P., Nikolis, S. C., Swain, R. B., and Sumpter, D. J. (2013). A dynamical systems approach to modeling human development. Econometrica. submitted.
  22. Robert, C. P. (1994). The Bayesian Choice: a decisiontheoretic motivation. Springer-Verlag, New York.
  23. Saperstein, A. M. (2000). Dynamical Modeling of the Onset of War. World Scientific Publishing Company.
  24. Stebbins, R. A. (2001). Exploratory Research in Social Sciences. SAGE, London.
  25. Strogatz, S. H. (2000). Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering. Westview Press.
  26. Treiman, D. L. (2009). Quantitative Data Analysis: Doing Social Research to Test Ideas. Jossey-Bass.
Download


Paper Citation


in Harvard Style

Ranganathan S., Spaiser V. and J. T. Sumpter D. (2013). A Bayesian Approach to Modeling Dynamical Systems in the Social Sciences . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-8565-69-3, pages 125-131. DOI: 10.5220/0004480901250131


in Bibtex Style

@conference{simultech13,
author={Shyam Ranganathan and Viktoria Spaiser and David J. T. Sumpter},
title={A Bayesian Approach to Modeling Dynamical Systems in the Social Sciences},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2013},
pages={125-131},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004480901250131},
isbn={978-989-8565-69-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - A Bayesian Approach to Modeling Dynamical Systems in the Social Sciences
SN - 978-989-8565-69-3
AU - Ranganathan S.
AU - Spaiser V.
AU - J. T. Sumpter D.
PY - 2013
SP - 125
EP - 131
DO - 10.5220/0004480901250131