Uncertainty Analysis of the LOCA Break Size Prediction Model using GMDH

Soon Ho Park, Jae Hwan Kim, Dae Seop Kim, Man Gyun Na

Abstract

When transients or accidents occur in the nuclear power plants, the plant operators and technical staffs are provided with only partial information and faced with a number of signals and alarms. Therefore, providing information such as a break size in case of LOCA is essential to control these events successively. In this paper, in order to predict the LOCA break size, a prediction model was developed by using group method of data handling (GMDH) algorithm, and we have conducted its uncertainty analysis. The proposed prediction model was verified using the acquired data from the OPR1000 nuclear power plant.

References

  1. S. W. Cheon and S. H. Chang, May 1993, Application of neural networks to connectionist expert system for transient identification in nuclear power plants, Nucl. Technol., vol. 102, no. 2, pp. 177-191.
  2. Y. Bartal, J. Lin, and R. E. Uhrig, June 1995, Nuclear power plant transient diagnostics using artificial neural networks that allow “don't-know” classifications, Nucl. Technol., vol. 110, no. 3, pp. 436-449.
  3. M. G. Na, S. M. Lee, S. H. Shin, D. W. Jung, S. P. Kim, J. H. Jeong, and B. C. Lee, April. 2004, Prediction of major transient scenarios for severe accidents of nuclear power plants, IEEE Trans. Nucl. Sci., vol. 51, no. 2, pp. 313-321.
  4. M. G. Na, W. S. Park, and D. H. Lim, Feb. 2008, Detection and diagnostics of loss of coolant accidents using support vector machines, IEEE Trans. Nucl. Sci., vol. 55, no. 1, pp. 628-636.
  5. S. H. Lee, Y. G. No, M. G. Na, K.-I. Ahn and S.-Y. Park, Feb. 2011, Diagnostics of loss of coolant accidents using SVC and GMDH models, IEEE Trans. Nucl. Sci., vol. 58, no. 1, pp. 267-276.
  6. I.-Y.Seo, B.-N. Ha, S.-W. Lee, C.-H. Shin, and S.-J. Kim, 2010, Principal components based support vector regression model for on-line instrument calibration monitoring in NPPs, Nucl. Eng. Technol., vol. 42, no. 2, pp. 219-230.
  7. E. Zio and R. Bazzo, Aug. 2010, Optimization of the test intervals of a nuclear safety system by genetic algorithms, solution clustering and fuzzy preference assignment, Nucl. Eng. Technol., vol. 42, no. 4, pp. 414-425.
  8. Bo-Suk Yang, Won-Woo Hwang, M.-H. Ko, and S.-J. Lee, Oct. 2005, Cavitation detection of butterfly valve using support vector machines, J. Sound Vibr., vol. 287, nos. 1-2, pp. 25-43.
  9. D. F. Specht, 1990, Probabilistic Neural Networks, Neural Networks, vol. 3, no. 1, pp. 109-118.
  10. A. G. Ivakhnenko, 1968, The group method of data handling; a rival of method of stochastic approximation, Soviet Automatic Control, vol. 1, no. 3, pp. 43-55.
  11. S.J. Farlow, 1984, Self-Organizing Methods in Modeling: GMDH Type Algorithms, Marcel Dekker, New York.
  12. C. R. Hild, 1998, Development of The Group Method of Data Handling With Information-based Model Evaluation Criteria: A New Approach to Statistical Modeling, Ph.D. Dissertation, Univ. Tennessee, Knoxville.
  13. P. B. Ferreira and B. R. Upadhyaya, December 1999, Incipient Fault Detection and Isolation of Sensors and Field Devices, Nuclear Engineering Dept., Univ. Tennessee, Knoxville, UTNE/BRU/99-02.
  14. A. G. Ivakhnenko, 1971, Polynomial theory of complex systems, IEEE Trans. Syst. Man & Cybern, SMC-1, pp. 364-378.
  15. T. Takagi and M. Sugeno, Jan./Feb. 1985, Fuzzy Identification of Systems and Its Applications to Modeling and Control, IEEE Trans. Systems, Man, 20 15 10 )(% 5 r
  16. rro 0 e
  17. itve -5 a
  18. re-10 Cybern., vol. SMC-1, no. 1, pp. 116-132.
  19. S. L. Chiu, 1994, Fuzzy Model Identification Based on Cluster Estimation, J. Intell. Fuzzy Systems, Vol. 2, pp. 267-278.
  20. V. Kecman, 2001, Learning and Soft Computing, Cambridge, Massachusetts: MIT Press.
  21. V. Vapnik, 1995, The Nature of Statistical Learning Theory, New York, Springer.
  22. D. E. Goldberg, 1989, Genetic Algorithms in Search, Optimization, and Machine Learning, Reading, Massachusetts: Addison Wesley.
  23. M. Mitchell, 1996, An Introduction to Genetic Algorithms, Cambridge, Massachusetts: MIT Press.
  24. R. E. Henry et al., 1990, MAAP4 - Modular Accident Analysis Program for LWR Power Plants, User's Manual, Burr Ridge, IL: Fauske, vol. 1-4.
  25. J.W. Hines, B. Rasmussen, Sept. 2005, Online sensor calibration monitoring uncertainty estimation, Nucl. Technol., vol. 151, pp. 281-288.
  26. R. Tibshirani, 1996, A comparison of some error estimates for neural network models, Neural Computation, vol. 8, pp. 152-163.
Download


Paper Citation


in Harvard Style

Ho Park S., Hwan Kim J., Seop Kim D. and Gyun Na M. (2013). Uncertainty Analysis of the LOCA Break Size Prediction Model using GMDH . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-8565-70-9, pages 221-226. DOI: 10.5220/0004481002210226


in Bibtex Style

@conference{icinco13,
author={Soon Ho Park and Jae Hwan Kim and Dae Seop Kim and Man Gyun Na},
title={Uncertainty Analysis of the LOCA Break Size Prediction Model using GMDH},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2013},
pages={221-226},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004481002210226},
isbn={978-989-8565-70-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Uncertainty Analysis of the LOCA Break Size Prediction Model using GMDH
SN - 978-989-8565-70-9
AU - Ho Park S.
AU - Hwan Kim J.
AU - Seop Kim D.
AU - Gyun Na M.
PY - 2013
SP - 221
EP - 226
DO - 10.5220/0004481002210226