A Flexible Framework for Mobile Robot Pose Estimation and Multi-Sensor Self-Calibration

Davide Antonio Cucci, Matteo Matteucci

Abstract

The design and the development of the position and orientation tracking system of a mobile robot, and the calibration of its sensor parameters (e.g., displacement, misalignment and iron distortions), are challenging and time consuming tasks in every autonomous robotics project. The ROAMFREE framework delivers turn-on-and-go multi-sensors pose tracking and self-calibration modules and it is designed to be flexible and to adapt to every kind of mobile robotic platform. In ROAMFREE, the sensor data fusion problem is formulated as a hyper-graph optimization where nodes represent poses and calibration parameters and edges the non-linear measurement constraints. This formulation allows us to solve both the on-line pose tracking and the off-line sensor self-calibration problems. In this paper, we introduce the approach and we discuss a real platform case study, along with experimental results.

References

  1. Abe, M. and Manning, W. (2009). Vehicle handling dynamics: theory and application. Butterworth-Heinemann.
  2. Bascetta, L., Cucci, D., Magnani, G., Matteucci, M., Osmankovic, D., and Tahirovic, A. (2012). Towards the implementation of a mpc-based planner on an autonomous all-terrain vehicle. In In Proceedings of Workshop on Robot Motion Planning: Online, Reactive, and in Real-time (IEEE/RJS IROS 2012), pages 1-7.
  3. Bascetta, L., Magnani, G., Rocco, P., and Zanchettin, A. (2009). Design and implementation of the low-level control system of an all-terrain mobile robot. In Advanced Robotics (ICAR), 2009 International Conference on, pages 1-6. IEEE.
  4. Borenstein, J., Everett, H., and Feng, L. (1996). Where am i? sensors and methods for mobile robot positioning. University of Michigan, 119:120.
  5. Bouvet, D. and Garcia, G. (2000). Improving the accuracy of dynamic localization systems using rtk gps by identifying the gps latency. In Robotics and Automation (ICRA), 2000 IEEE International Conference on, pages 2525-2530. IEEE.
  6. Censi, A., Marchionni, L., and Oriolo, G. (2008). Simultaneous maximum-likelihood calibration of odometry and sensor parameters. In Robotics and Automation (ICRA), 2008 IEEE International Conference on, pages 2098-2103. IEEE.
  7. Chen, Z. (2003). Bayesian filtering: From kalman filters to particle filters, and beyond. Statistics, 182(1):1-69.
  8. Gill, P. E. and Murray, W. (1978). Algorithms for the solution of the nonlinear least-squares problem. SIAM Journal on Numerical Analysis, 15(5):977-992.
  9. Harrison, A. and Newman, P. (2011). Ticsync: Knowing when things happened. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 356-363. IEEE.
  10. Hertzberg, C., Wagner, R., Frese, U., and Schr öDer, L. (2013). Integrating generic sensor fusion algorithms with sound state representations through encapsulation of manifolds. Information Fusion, 14(1):57-77.
  11. Horaud, R. and Dornaika, F. (1995). Hand-eye calibration. The international journal of robotics research, 14(3):195-210.
  12. K ümmerle, R., Grisetti, G., and Burgard, W. (2012). Simultaneous parameter calibration, localization, and mapping. Advanced Robotics, 26(17):2021-2041.
  13. K ümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Burgard, W. (2011). g2o: A general framework for graph optimization. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 3607-3613. IEEE.
  14. Martinelli, A., Tomatis, N., and Siegwart, R. (2007). Simultaneous localization and odometry self calibration for mobile robot. Autonomous Robots, 22(1):75-85.
  15. Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J., Berger, E., Wheeler, R., and Ng, A. (2009). ROS: an open-source robot operating system. In ICRA workshop on open source software, volume 3.
  16. Vasconcelos, J., Elkaim, G., Silvestre, C., Oliveira, P., and Cardeira, B. (2011). Geometric approach to strapdown magnetometer calibration in sensor frame. Aerospace and Electronic Systems, IEEE Transactions on, 47(2):1293-1306.
  17. Weiss, S., Achtelik, M., Chli, M., and Siegwart, R. (2012). Versatile distributed pose estimation and sensor selfcalibration for an autonomous mav. In Robotics and Automation (ICRA), 2012 IEEE International Conference on, pages 31-38. IEEE.
Download


Paper Citation


in Harvard Style

Antonio Cucci D. and Matteucci M. (2013). A Flexible Framework for Mobile Robot Pose Estimation and Multi-Sensor Self-Calibration . In Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO, ISBN 978-989-8565-71-6, pages 361-368. DOI: 10.5220/0004484703610368


in Bibtex Style

@conference{icinco13,
author={Davide Antonio Cucci and Matteo Matteucci},
title={A Flexible Framework for Mobile Robot Pose Estimation and Multi-Sensor Self-Calibration},
booktitle={Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,},
year={2013},
pages={361-368},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004484703610368},
isbn={978-989-8565-71-6},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 10th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO,
TI - A Flexible Framework for Mobile Robot Pose Estimation and Multi-Sensor Self-Calibration
SN - 978-989-8565-71-6
AU - Antonio Cucci D.
AU - Matteucci M.
PY - 2013
SP - 361
EP - 368
DO - 10.5220/0004484703610368