Effective Business Plan Evaluation using an Evolutionary Ensemble

G. Dounias, A. Tsakonas, D. Charalampakis, E. Vasilakis

Abstract

The paper proposes the use of evolving intelligent techniques, for effective business decision making related to strategic management. Under the current competitive environment, business plans appraisal arises as an important task for bankers, investors, venture capital fund managers and consultants among others. The process of business plans assessment requires various technical competencies, market awareness and adequate experience, thus increasing the relevant operating costs. A conceptual model for the evaluation of business plans is being proposed, with the use of both numerical and qualitative parameters, clustered under four headings. The input data is processed with the comparative use of ensembles of evolutionary classifiers, and an intelligent model of business plans’ appraisal is built. The reliability and the accuracy of the results are considered satisfactory by the subject matter experts.

References

  1. Brown G., Wyatt J., Harris R., Yao X., Diversity creation methods: a survey and categorisation, Inf. Fusion, 6, pp. 5-20, Special issue on diversity in multiple classifier systems (2005)
  2. Changchien S.W. and Lin M-C.: Design and implementation of a case-based reasoning system for marketing plans, Expert Systems with Applications (Elsevier), Vol. 35, 1145-1155 (2005)
  3. Chen L-H. and Hsiao H-D.: Feature selection to diagnose a business crisis by using a real GA-based support vector machine, Expert Systems with Applications (Elsevier), 28, 43-53 (2008)
  4. Eastwood M. and Gabrys B.: The Dynamics of Negative Correlation Learning, Journal of VLSI Signal Processing, 49:2, pp 251-263 (2007)
  5. Fowler A.: The role of AI-based technology in support of the knowledge management value activity cycle, Journal of Strategic Information Systems (Elsevier) Vol. 9, pp. 107-128 (2000)
  6. Gleiber. F. Royes and Golber F. Royes.: A hybrid-fuzzymulticriteria-CBR methodology for strategic planning support, In: IEEE-NAFIPS 2004s, Alberta, Canada, June 27-30, 2004, pp. 208-213 (2004)
  7. Jordan M. I. and Jacobs R. A.: Hierarchical mixtures of experts and the EM algorithm, In IJCNN 93, Proceedings of 1993 International Joint Conference on Neural Networks. Volume 2, JNNS, pp.1339-1344 (1993)
  8. Koza J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection, MIT Press, Cambridge, MA (1992)
  9. Koza J.R., Bennett III F.H., Keane M.A., Andre D.: Evolution of a time-optimal fly-to controller circuit using genetic programming, in Koza J.R., Deb k., Dorigo M., Fogel D.B., Garzon M., Iba H., Riolo L. (Eds.), Genetic Programming 1997: Proceedings of the Second Annual Conference, 207-212, Stanford University, Morgan Kaufmann (1997)
  10. Koza J.R., Bennett III F.H., Hutchings J.L., Bade S.L., Keane M.A., Andre D.: Evolving sorting networks using genetic programming and rapidly reconfigurable field-programmable gate arrays, in Higuchi T. (Ed.), Workshop on Evolvable Systems, International Joint Conference on Artificial Intelligence, 27-32 (1997)
  11. Koza J.R., Bennett III F.H., Lohn J., Dunlap F., Keane M.A., Andre D.: Automated synthesis of computational circuits using genetic programming, in Proceedings of the 1997 IEEE International Conference on Evolutionary Computation, pp. 447-452, Indianapolis, IEEE Press (1997)
  12. Lee J-H and Park S-C.: Application of a multi-agent intelligent approach for profitable customer segmentation, Expert Systems with Applications (Elsevier), Vol. 29, pp. 145-152 (2005)
  13. Perrone, M. P., Cooper, L. N.: When networks disagree: Ensemble methods for hybrid neural networks, in R. J. Mammone (ed.), Neural Networks for Speech and Image Processing, Chapman-Hall, London, pp 126- 142 (1993)
  14. Royes G.F., Bastos R.C..: Applicants' selection applying a fuzzy muticriteria CBR methodology, Journal of Intelligent and Fuzzy Systems, 14(4), 167-180 (2003)
  15. Sun Y., Kamel M.S., Wang Y., Boosting for Learning Multiple Classes with Imbalanced Class Distribution, Proceedings of the Sixth International Conference on Data Mining (ICDM'06), IEEE Computer Society (2006)
  16. Tsakonas A. Dounias G.: A Scheme for the Evolution of Feedforward Neural Networks using BNF-Grammar Driven Genetic Programming, in Proc. of Eunite-02 Conf., European Network of Excellence for Intelligent Technologies, Algarve (2002)
  17. Tsakonas A., Dounias G.: Hierarchical Classification Trees Using Type-Constrained Genetic Programming, in Proc. of 1st Intl. IEEE Symposium in Intelligent Systems, Varna (2002)
  18. Tsakonas A, Dounias G, Jantzen J, Axer H, Bjerregaard B, von Keyserlingk DG.:Evolving rule-based systems in two medical domains using genetic programming, Artif Intell Med., 32(3):195-216 (2004)
  19. Tumer K., Ghosh J.: Error Correlation and Error Reduction in Ensemble Classifiers, Connection Science, Taylor & Francis, 8:3/4, pp 385-404 (1996)
  20. Wen W., Chen Y.H., Chen I.C.: A knowledge-based decision support system for measuring enterprise performance, Knowledge Based Systems (Elsevier) Vol, 21, pp. 148-163 (2008)
  21. Whigham P.A.: Search bias, language bias and genetic programming, Genetic Programming 1996: Proceedings of the First Annual Conference, J.R.Koza, D.E.Goldberg, D.B.Fogel, R.L.Riolo (Eds.), 410-415, Stanford University, CA, MIT Press (1996)
  22. Whigham P.A.: Grammatical Bias for Evolutionary Learning, Ph.D. Thesis, University of New South Wales, Australian Defence Force Academy (1996)
  23. Xu D-L, McCarthy G., Yang J-B.: Intelligent decision system and its application in business innovation self assessment, Decision Support Systems Vol. 42, (Elsevier), 664-673 (2006)
  24. Zadeh L.A.: Fuzzy sets, Information Control, 8, pp. 338- 353 (1965)
  25. Zhou Z., Wu J., Jiang Y., S. Chen, R.: Genetic algorithm based selective neural network ensemble, In Proc. of 17th Int'l Joint Conf. Artif. Intell. , USA, Morgan Kaufmann, pp 797-802 (2001)
Download


Paper Citation


in Harvard Style

Dounias G., Tsakonas A., Charalampakis D. and Vasilakis E. (2013). Effective Business Plan Evaluation using an Evolutionary Ensemble . In Proceedings of the 2nd International Conference on Data Technologies and Applications - Volume 1: DATA, ISBN 978-989-8565-67-9, pages 97-103. DOI: 10.5220/0004491400970103


in Bibtex Style

@conference{data13,
author={G. Dounias and A. Tsakonas and D. Charalampakis and E. Vasilakis},
title={Effective Business Plan Evaluation using an Evolutionary Ensemble},
booktitle={Proceedings of the 2nd International Conference on Data Technologies and Applications - Volume 1: DATA,},
year={2013},
pages={97-103},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004491400970103},
isbn={978-989-8565-67-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Conference on Data Technologies and Applications - Volume 1: DATA,
TI - Effective Business Plan Evaluation using an Evolutionary Ensemble
SN - 978-989-8565-67-9
AU - Dounias G.
AU - Tsakonas A.
AU - Charalampakis D.
AU - Vasilakis E.
PY - 2013
SP - 97
EP - 103
DO - 10.5220/0004491400970103