Using Associations and Fuzzy Ontologies for Modeling Chemical Safety Information

Mika Timonen, Antti Pakonen, Teemu Tommila

Abstract

In this paper we propose a novel approach for domain modeling that combines two different types of models: (1) fuzzy ontology that describes the concepts of the domain and their relations in a formal way, and (2) association model that presents the associations between the terms of the domain. We utilize the combined model for query expansion by finding both highly associative and related concepts for the query terms. To demonstrate the feasibility of the model and its utilization, we use the query expansion in a search engine of chemical safety cards.

References

  1. Agrawal, R., Imielinski, T., and Swami, A. N. (1993). Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data (SIGMOD'93), USA, pages 207-216.
  2. Bhogal, J., Macfarlane, A., and Smith, P. (2007). A review of ontology based query expansion. Information Processing & Management, 43(4):866 - 886.
  3. Bordogna, G. and Pasi, G. (2000). Application of fuzzy set theory to extend boolean information retrieval. Studies in Fuzziness and Soft Computing, 50:21-47.
  4. Carlsson, C., Brunelli, M., and Mezei, J. (2010). Fuzzy ontology and information granulation: an approach to knowledge mobilisation. Information Processing and Management of Uncertainty in Knowledge-Based Systems. Applications, pages 420-429.
  5. Carpineto, C. and Romano, G. (2012). A survey of automatic query expansion in information retrieval. ACM Computing Surveys, 44(1):1:1-1:50.
  6. Crestani, F. (1997). Application of spreading activation techniques in information retrieval. Artificial Intelligence Review, 11(6):453-482.
  7. Cross, V. (2004). Fuzzy semantic distance measures between ontological concepts. In Fuzzy Information, 2004. Processing NAFIPS'04. IEEE Annual Meeting of the, volume 2, pages 635-640. IEEE.
  8. Formica, A., Missikoff, M., Pourabbas, E., and Taglino, F. (2008). Weighted ontology for semantic search. On the Move to Meaningful Internet Systems: OTM 2008, pages 1289-1303.
  9. Hirvonen, J., Tommila, T., Pakonen, A., Carlsson, C., Fedrizzi, M., and Fullér, R. (2010). Fuzzy keyword ontology for annotating and searching event reports. In KEOD 2010 - Proceedings of the International Conference on Knowledge Engineering and Ontology Development, Valencia, Spain, October 25-28, 2010, pages 251-256.
  10. Janowicz, K., Raubal, M., and Kuhn, W. (2012). The semantics of similarity in geographic information retrieval. Journal of Spatial Information Science, (2):29-57.
  11. Laskey, K. J. and Laskey, K. B. (2008). Uncertainty reasoning for the world wide web: Report on the URW3-XG incubator group. URW3-XG, W3C.
  12. Mihalcea, R. and Tarau, P. (2004). Textrank: Bringing order into text. In Proceedings of the 2004 Conference on Empirical Methods in Natural Language Processing, (EMNLP'04), A meeting of SIGDAT, a Special Interest Group of the ACL, held in conjunction with ACL 2004, 25-26 July 2004, Spain, pages 404-411.
  13. Mostafavi, S., Ray, D., Warde-Farley, D., Grouios, C., Morris, Q., et al. (2008). Genemania: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol, 9(Suppl 1):S4.
  14. Parry, D. (2006). Fuzzy ontologies for information retrieval on the www. Capturing Intelligence, 1:21-48.
  15. Pearl, J. (1984). Heuristics - intelligent search strategies for computer problem solving. Addison-Wesley series in artificial intelligence. Addison-Wesley.
  16. Pen˜a-Castillo, L., Tasan, M., Myers, C. L., Lee, H., Joshi, T., Zhang, C., Guan, Y., Leone, M., Pagnani, A., Kim, W. K., et al. (2008). A critical assessment of mus musculus gene function prediction using integrated genomic evidence. Genome Biol, 9(Suppl 1):S2.
  17. Sanchez, E. and Yamanoi, T. (2006). Fuzzy ontologies for the semantic web. Flexible Query Answering Systems, pages 691-699.
  18. Tetko, I. V. (2002a). Associative neural network. Neural Processing Letters, 16(2):187-199.
  19. Tetko, I. V. (2002b). Neural network studies. 4. introduction to associative neural networks. Journal of chemical information and computer sciences, 42(3):717-728.
  20. Thomas, C. and Sheth, A. (2006). On the expressiveness of the languages for the semantic webmaking a case for a little more. Capturing Intelligence, 1:3-20.
  21. Timonen, M. (2013). Term Weighting in Short Documents for Document Categorization, Keyword Extraction and Query Expansion. PhD thesis, University of Helsinki, Faculty of Science, Department of Computer Science.
  22. Timonen, M., Silvonen, P., and Kasari, M. (2011). Modelling a Query Space Using Associations, volume 255 of Frontiers in Artificial Intelligence and Applications: Information Modelling and Knowledge Bases XXII. IOS Press.
  23. W3C Recommendation (2004). OWL Web Ontology Language. http://www.w3.org/TR/owl-features/.
  24. Widyantoro, D. H. and Yen, J. (2001). A fuzzy ontologybased abstract search engine and its user studies. In Fuzzy Systems, 2001. The 10th IEEE International Conference on, volume 3, pages 1291-1294. IEEE.
  25. Yang, L., Ball, M., Bhavsar, V., and Boley, H. (2005). Weighted partonomy-taxonomy trees with local similarity measures for semantic buyer-seller matchmaking.
  26. Zhang, K., Tang, J., Hong, M., Li, J., and Wei, W. (2006). Weighted ontology-based search exploiting semantic similarity. Frontiers of WWW Research and Development-APWeb 2006, pages 498-510.
Download


Paper Citation


in Harvard Style

Timonen M., Pakonen A. and Tommila T. (2013). Using Associations and Fuzzy Ontologies for Modeling Chemical Safety Information . In Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013) ISBN 978-989-8565-81-5, pages 26-37. DOI: 10.5220/0004536400260037


in Bibtex Style

@conference{keod13,
author={Mika Timonen and Antti Pakonen and Teemu Tommila},
title={Using Associations and Fuzzy Ontologies for Modeling Chemical Safety Information},
booktitle={Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013)},
year={2013},
pages={26-37},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004536400260037},
isbn={978-989-8565-81-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Engineering and Ontology Development - Volume 1: KEOD, (IC3K 2013)
TI - Using Associations and Fuzzy Ontologies for Modeling Chemical Safety Information
SN - 978-989-8565-81-5
AU - Timonen M.
AU - Pakonen A.
AU - Tommila T.
PY - 2013
SP - 26
EP - 37
DO - 10.5220/0004536400260037