Using Domain Knowledge in Association Rules Mining - Case Study

Jan Rauch, Milan Šimůnek

Abstract

A case study concerning an approach to application of domain knowledge in association rule mining is presented. Association rules are understood as general relations of two general Boolean attributes derived from columns of an analysed data matrix. Interesting items of domain knowledge are expressed in an intuitive form distinct from association rules. Each particular pattern of domain knowledge is mapped onto a set of all association rules which can be considered as its consequences. These sets are used when interpreting results of data mining procedure. Deduction rules concerning association rules are applied.

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., and Verkamo, A. I. (1996). Fast discovery of association rules. In Advances in Knowledge Discovery and Data Mining, pages 307-328. AAAI/MIT Press.
  2. Brossette, S. E., Sprague, A. P., Hardin, J. M., Waites, K. B., Jones, W. T., and Moser, S. A. (1998). Research paper: Association rules and data mining in hospital infection control and public health surveillance. JAMIA, 5(4):373-381.
  3. Delgado, M., Ruiz, M., and Sanchez, D. (2011). New approaches for discovering exception and anomalous rules. International Journal of Uncertainty and Knowledge-based Systems, 19(2):361-399.
  4. Delgado, M., Sanchez, D., Martin-Bautista, M., and Vila, M. (2001). Mining association rules with improved semantics in medical databases. Artificial Intelligence in Medicine, 21(1-3):241-245.
  5. Hájek, P. and Havránek, T. (1978). Mechanizing Hypothesis Formation (Mathematical Foundations for a General Theory. Springer-Verlag, Berlin Heidellberg New York, 1st edition.
  6. Hájek, P., Holen?a, M., and Rauch, J. (2010). The GUHA method and its meaning for data mining. Journal of Computer and System Science, 76(1):34-48.
  7. Ordonez, C., Ezquerra, N., and Santana, C. A. (2006). Constraining and summarizing association rules in medical data. Knowledge and Information Systems (KAIS), 9(3):259-283.
  8. Rauch, J. (2011). Consideration on a formal frame for data mining. In Hong, T.-P., Kudo, Y., Kudo, M., Lin, T. Y., Chien, B.-C., Wang, S.-L., Inuiguchi, M., and Liu, G., editors, GrC, pages 562-569. IEEE.
  9. Rauch, J. (2013). Observational Calculi and Association Rules, volume 469 of Studies in Computational Intelligence. Springer.
  10. Rauch, J. and S? imu°nek, M. (2005). An alternative approach to mining association rules. In Lin, T. Y., Ohsuga, S., Liau, C.-J., Hu, X., and Tsumoto, S., editors, Foundations of Data Mining and knowledge Discovery, volume 6 of Studies in Computational Intelligence, pages 211-231. Springer.
  11. Rauch, J. and S? imu°nek, M. (2011). Applying domain knowledge in association rules mining process - first experience. In Kryszkiewicz, M., Rybinski, H., Skowron, A., and Ras, Z. W., editors, ISMIS, volume 6804 of Lecture Notes in Computer Science, pages 113-122. Springer.
  12. Roddick, J. F., Fule, P., and Graco, W. J. (2003). Exploratory medical knowledge discovery: experiences and issues. SIGKDD Explorations, 5(1):94-99.
Download


Paper Citation


in Harvard Style

Rauch J. and Šimůnek M. (2013). Using Domain Knowledge in Association Rules Mining - Case Study . In Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowledge Management and Information Sharing - Volume 1: KDIR, (IC3K 2013) ISBN 978-989-8565-75-4, pages 104-111. DOI: 10.5220/0004539101040111


in Bibtex Style

@conference{kdir13,
author={Jan Rauch and Milan Šimůnek},
title={Using Domain Knowledge in Association Rules Mining - Case Study},
booktitle={Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowledge Management and Information Sharing - Volume 1: KDIR, (IC3K 2013)},
year={2013},
pages={104-111},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004539101040111},
isbn={978-989-8565-75-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Conference on Knowledge Discovery and Information Retrieval and the International Conference on Knowledge Management and Information Sharing - Volume 1: KDIR, (IC3K 2013)
TI - Using Domain Knowledge in Association Rules Mining - Case Study
SN - 978-989-8565-75-4
AU - Rauch J.
AU - Šimůnek M.
PY - 2013
SP - 104
EP - 111
DO - 10.5220/0004539101040111