A New Methodology for Mitigation of Lava Flow Invasion Hazard - Morphological Evolution of Protective Works by Parallel Genetic Algorithms

G. Filippone, W. Spataro, D. D'Ambrosio, D. Marocco


The determination of areas exposed to be interested by new eruptive events in volcanic regions is crucial for diminishing consequences in terms of human causalities and damages of material properties. Nevertheless, urbanized areas, cultural heritage sites or even important infrastructures, such as power plants, hospitals and schools can be protected by diverting the flow towards lower interest regions. This paper describes the application of Parallel Genetic Algorithms for optimizing earth barriers construction by morphological evolution, to divert a case study lava flow that is simulated by the numerical Cellular Automata model Sciara-fv2 at Mt Etna (Sicily, Italy). In particular, the application regards the optimization of the position, orientation and extension of an earth barrier built to protect Rifugio Sapienza, a touristic facility located near the summit of the volcano. The study has produced extremely positive results and represents, to our knowledge, the first application of morphological evolution for lava flow mitigation. Among different alternatives generated by the Genetic Algorithm, an interesting scenario consists of an earthen barrier solution (with a length of 225 m, average height of 25 m, base width of 10 m and volume of 56180 m$^{3}$) which completely deviates the flow avoiding that the lava reaches the inhabited area.


  1. Avolio, M. V., Crisci, G. M., Di Gregorio, S., Rongo, R., Spataro, W., and D'Ambrosio, D. (2006). Pyroclastic flows modelling using Cellular Automata. Computers & Geosciences, 32:897-911.
  2. Barberi, F., Brondi, F., Carapezza, M., Cavarra, L., and Murgia, C. (2003). Earthen barriers to control lava flows in the 2001 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research, 123:231-243.
  3. Barberi, F., Carapezza, M., Valenza, M., and Villari, L. (1993). The control of lava flow during the 1991- 1992 eruption of Mt. Etna. Journal of Volcanology and Geothermal Research, 56:1-34.
  4. Barberi, F. and Carapezza, M. L. (2004). Mt. Etna: Volcano Laboratory, chapter The Control of Lava Flows at Mt. Etna, pages 357-369. American Geophysical Union, Washington, D. C.
  5. Barca, D., Crisci, G. M., Di Gregorio, S., and Nicoletta, F. (1994). Cellular Automata for simulating lava flows: a method and examples of the etnean eruptions. Transport Theory and Statistical Physics, 23(1-3):195-232.
  6. Behncke, B. and Neri, M. (2003). The July-August 2001 eruption of Mt. Etna (Sicily). Bulletin of Volcanology, 65(7):461-476.
  7. Bentley, P. (1999). An introduction to evolutionary design by computers. In Bentley, P. J., editor, Evolutionary Design by Computers, chapter 1, pages 1-73. Morgan Kaufman, San Francisco, USA.
  8. Bongard, J. (2011). Morphological change in machines accelerates the evolution of robust behavior. Proceedings of the National Academy of Sciences, 108(4):1234-1239.
  9. Bresenham, J. (1965). Algorithm for computer control of a digital plotter. IBM Systems Journal, 4(1):25-30.
  10. Colombrita, R. (1984). Methodology for the construction of earth barriers to divert lava flows: The Mt. Etna 1983 eruption. Bulletin Volcanologique, 47(4):1009-1038.
  11. Crisci, G. M., Rongo, R., Gregorio, S. D., and Spataro, W. (2004). The simulation model SCIARA: the 1991 and 2001 lava flows at Mount Etna. Journal of Volcanology and Geothermal Research, 132(23):253 - 267.
  12. D'Ambrosio, D., Filippone, G., Rongo, R., Spataro, W., and Trunfio, G. A. (2012a). Cellular automata and GPGPU: an application to lava flow modeling. International Journal of Grid and High Performance Computing, 4(3):30-47.
  13. D'Ambrosio, D., Rongo, R., Spataro, W., and Trunfio, G. (2012b). Optimizing Cellular Automata through a Meta-model Assisted Memetic Algorithm. In Proceedings of Parallel Problem Solving from Nature - PPSN XII, volume 7492 of Lecture Notes in Computer Science, pages 317-326. Springer Berlin Heidelberg.
  14. D'Ambrosio, D., Rongo, R., Spataro, W., and Trunfio, G. A. (2012c). Meta-model assisted evolutionary optimization of cellular automata: an application to the sciara model. In Proceedings of the 9th international conference on Parallel Processing and Applied Mathematics - Volume Part II, PPAM'11, pages 533 - 542, Berlin, Heidelberg. Springer-Verlag.
  15. Del Negro, C., Fortuna, L., Herault, A., and Vicari, A. (2008). Simulations of the 2004 lava flow at Etna volcano using the magflow cellular automata model. Bulletin of Volcanology, 70(7):805-812.
  16. Di Gregorio, S. and Serra, R. (1999). An empirical method for modelling and simulating some complex macroscopic phenomena by cellular automata. Future Generation Computer Systems, 16(2-3):259-271.
  17. Di Gregorio, S., Serra, R., and Villani, M. (1999). Applying cellular automata to complex environmental problems: The simulation of the bioremediation of contaminated soils. Theoretical Computer Science, 217(1):131 - 156.
  18. Dibben, C. (2008). Leaving the city for the suburbs - The domincance of 'ordinary' decision making over volkanik risk perception in the production of volcanic risk on Mt. Etna, sicily. Journal of Volcanology and Geothermal Research, 172(7):288-299.
  19. ElSayed, A., Kongar, E., Gupta, S., and Sobh, T. (2012). A Robotic-Driven Disassembly Sequence Generator for End-Of-Life Electronic Products. Journal of Intelligent & Robotic Systems, 68(1):43-52.
  20. Filippone, G., Spataro, D'Ambrosio, D., and Marocco, D. (2013). An interactive Visualization System for Lava Flows Cellular Automata Simulations using CUDA. Poster presented at GPU Technology Conference, San Jose, California.
  21. Filippone, G., Spataro, W., Spingola, G., D'Ambrosio, D., Rongo, R., Perna, G., and Di Gregorio, S. (2011). GPGPU programming and cellular automata: Implementation of the SCIARA lava flow simulation code. In 23rd European Modeling and simulation Symposium (WMSS), Rome, Italy.
  22. Fujita, E., Hidaka, M., Goto, A., and Umino, S. (2009). Simulations of measures to control lava flows. Bulletin of Volcanology, 71:401-408.
  23. Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition.
  24. Goncalves, J. F. and Resende, M. G. (2011). Biased random-key genetic algorithms forcombinatorial optimization. Journal of Heuristics, 17(5):487-525.
  25. Hinton, G. E. and Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, pages 495-502.
  26. Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence. The MIT Press.
  27. Iovine, G., D'Ambrosio, D., and Di Gregorio, S. (2005). Applying genetic algorithms for calibrating a hexagonal cellular automata model for the simulation of debris flows characterised by strong inertial effects. Geomorphology, 66(14):287 - 303.
  28. Ishihara, K., Iguchi, M., and Kamo, K. (1990). Numerical simulation of lava flows on some volcanoes in Japan. In Fink, J. H., editor, Lava Flows and Domes, volume 2 of IAVCEI Proceedings in Volcanology, pages 174-207. Springer Berlin Heidelberg.
  29. Kicinger, R., Arciszewski, T., and Jong, K. D. (2005). Evolutionary computation and structural design: A survey of the state-of-the-art. Comput. Struct., 83(23- 24):1943-1978.
  30. Lipson, H. and Pollack, J. B. (2000). Automatic Design and Manufacture of Artificial Lifeforms. Nature, 406:974-978.
  31. MacDonald, G. A. (1962). The 1959 and 1960 eruptions of Kilauea volcano, Hawaii, and the construction of walls to restrict the spread of the lava flows. Bulletin Volcanologique, 24(1):249-294.
  32. Mitchell, M. (1996). An introduction to Genetic Algorithms. MIT Press, Cambridge, MA, USA.
  33. Miyamoto, H. and Sasaki, S. (1997). Simulating lava flows by an improved cellular automata method. Computers & Geosciences, 23(3):283-292.
  34. Nolfi, S. and Marocco, D. (2001). Evolving robots able to integrate sensory-motor information over time. Theory in Biosciences, 120:287-310.
  35. Piwonska, A., Seredynski, F., and Szaban, M. (2013). Learning cellular automata rules for binary classification problem. The Journal of Supercomputing, 63(3):800-815.
  36. Rongo, R., Spataro, W., D'Ambrosio, D., Avolio, M. V., Trunfio, G. A., and Di Gregorio, S. (2008). Lava flow hazard evaluation through cellular automata and genetic algorithms: an application to Mt Etna volcano. Fundam. Inf., 87:247-267.
  37. Sims, K. (1994). Evolving 3d morphology and behavior by competition. In Proceedings of Artificial Life IV, pages 28-39. MIT Press.
  38. Spataro, W., Avolio, M. V., Lupiano, V., Trunfio, G. A., Rongo, R., and D'Ambrosio, D. (2010). The latest release of the lava flows simulation model SCIARA: First application to Mt Etna (Italy) and solution of the anisotropic flow direction problem on an ideal surface. In International Conference on Computational Science, pages 17-26.
  39. Spataro, W., D'Ambrosio, D., Rongo, R., and Trunfio, G. (2004). An Evolutionary Approach for Modelling Lava Flows through Cellular Automata. In ACRI 2004, volume 3305 of Lecture Notes in Computer Science, pages 725-734. Springer Berlin Heidelberg.
  40. Tomassini, M. and Venzi, M. (2002). Artificially evolved asynchronous cellular automata for the density task. In Procedings of the fifth International Conference on Cellular Automata for Research and Industry., volume 2493 of Lecture Notes in Computer Science, pages 44-55. Springer Berlin Heidelberg.

Paper Citation

in Harvard Style

Filippone G., Spataro W., D'Ambrosio D. and Marocco D. (2013). A New Methodology for Mitigation of Lava Flow Invasion Hazard - Morphological Evolution of Protective Works by Parallel Genetic Algorithms . In Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2013) ISBN 978-989-8565-77-8, pages 13-24. DOI: 10.5220/0004540400130024

in Bibtex Style

author={G. Filippone and W. Spataro and D. D'Ambrosio and D. Marocco},
title={A New Methodology for Mitigation of Lava Flow Invasion Hazard - Morphological Evolution of Protective Works by Parallel Genetic Algorithms},
booktitle={Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2013)},

in EndNote Style

JO - Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: ECTA, (IJCCI 2013)
TI - A New Methodology for Mitigation of Lava Flow Invasion Hazard - Morphological Evolution of Protective Works by Parallel Genetic Algorithms
SN - 978-989-8565-77-8
AU - Filippone G.
AU - Spataro W.
AU - D'Ambrosio D.
AU - Marocco D.
PY - 2013
SP - 13
EP - 24
DO - 10.5220/0004540400130024