Fuzzy Similarity based Fuzzy TOPSIS with Multi-distances

Pasi Luukka, Mario Fedrizzi, Leoncie Niyigena, Mikael Collan

Abstract

This article introduces a new extension to fuzzy similarity based fuzzy TOPSIS that uses multi-distance in aggregation. OWA-based multi-distances are used in the aggregation process. For the weight generation in OWA the O'Hagan's method is used to find optimal weights. Several different, predefined orness values were tested. The presented method is applied to a project selection problem.

References

  1. Niyigena, L., Luukka, P., Collan, M., 2013. Supplier evaluation with fuzzy similarity based fuzzy TOPSIS with new fuzzy similarity measure, 13th IEEE International symposium on computational intelligence and informatics. Budapest, November, 2012.
  2. Zadeh, L. 1971., Similarity relations and fuzzy orderings. Inform sci, 3, pp. 177-200.
  3. Shepard, R. N., 1987. Toward a universal law of generalization for psychological science. Science, 237, pp. 1317- 1323.
  4. Chen, S. H., 1985. Operations on fuzzy numbers with function principal, Tamkang journal of management sciences, 6,1, pp. 13-25.
  5. Wei S.-H., Chen, S.-M., 2009, A new approach for fuzzy risk analysis based on similarity measures of generalized fuzzy numbers, Expert systems with applications 36. pp. 589-598.
  6. Chen C. T., 2000. Extensions of the TOPSIS for group decision-making under fuzzy environment, Fuzzy sets and systems, Vol. 114, pp. 1-9.
  7. Chen, C.-T., Lin, C.-T., Huang, S.-F., 2006. A fuzzy approach for supplier evaluation and selection in supply chain management, International journal of production economics, Vol. 102, Issue 2, pp. 289-301.
  8. Collan, M., Luukka, P., 2013. Evaluating R & D projects as investments by using an overall ranking from four new fuzzy similarity measure based TOPSIS variants, IEEE Transactions on fuzzy systems, Vol 26, Issue 6, pp. 1-11.
  9. Hejazi, S.R., Doostparast, A., Hosseini, S.M., 2011, An improved fuzzy risk analysis based on a new similarity measures of generalized fuzzy numbers, Expert systems with applications, Vol. 38, Issue 8, pp. 1-7.
  10. Kaufmann, M., Gupta, M., 1988. Fuzzy mathematical models in engineering and management science: Elsevier science publishers B. V.
  11. Luukka, P., 2011. Fuzzy similarity in multicriteria decisionmaking problem applied to supplier evaluation and selection in supply chain management, Hindawi publishing corporation, Advances in artificial Intelligence, pp. 1-9.
  12. Socorro, M., García-Cascales, M., Lamata, T., 2007. Solving a decision problem with linguistic information, Pattern recognition letters, Elsevier, Vol. 28, No. 16, pp. 2284-2294.
  13. Cui, Z. X., Yoo, H. K., Choi, J. Y., Youn, H. Y., 2011. Multi-criteria group decision making with fuzzy logic and entropy based weighting, Proceedings of the 5th ICUIMC'11, Feb. 2011, pp. 1-7.
  14. Martin, J., Mayor, G., 2010. Some properties of multiargument distances and Fermat multidistance, In: proceedings of IPMU 2010, pp. 703-711.
  15. Martin, J., Mayor, G., Valero, O., 2011. Multi-argument distances, Fuzzy sets and systems, 167, pp. 92-100.
  16. Mahmoodzadeh, S., Shahrabi, J., Pariazar, M., Zaeri, M.S., 2007. Project selection by using Fuzzy AHP and TOPSIS technique, International journal of human and social sciences, Vol. 1, No. 3, pp. 135-140.
  17. O'Hagan, M., 1988. Aggregating template or rule antecedents in real time expert systems with fuzzy set logic, In proceedings of 22nd Annual IEEE asilomar confernence on signals,systems, computers, Pacific Grove, California, pp. 681-689.
  18. Fullér, R., Majlander, P., 2001. An analytical approach for obtaining maximal entropy OWA operator weights, Fuzzy sets and systems, 124, pp. 53-57.
  19. Molinari, F. , 2012. About a new family of multi-distances, Fuzzy sets and systems, Vol. 195, pp. 118-122.
  20. Hassanzadeh F., Collan, M., Modarres, M., 2012. A practical approach to R & D portfolio selection using fuzzy set theory, IEEE transactions on fuzzy systems vol. 20, pp. 615-622.
  21. Collan, M., Fullér, R. and Mezei, J., 2009. A fuzzy pay-off method for real option valuation, Journal of applied mathematics and decision sciences, Online, Available: http://ideas.repec.org/p/pra/mprapa/13601.html., Accessed 20, march, 2012.
Download


Paper Citation


in Harvard Style

Luukka P., Fedrizzi M., Niyigena L. and Collan M. (2013). Fuzzy Similarity based Fuzzy TOPSIS with Multi-distances . In Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013) ISBN 978-989-8565-77-8, pages 193-200. DOI: 10.5220/0004552601930200


in Bibtex Style

@conference{fcta13,
author={Pasi Luukka and Mario Fedrizzi and Leoncie Niyigena and Mikael Collan},
title={Fuzzy Similarity based Fuzzy TOPSIS with Multi-distances},
booktitle={Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013)},
year={2013},
pages={193-200},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004552601930200},
isbn={978-989-8565-77-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013)
TI - Fuzzy Similarity based Fuzzy TOPSIS with Multi-distances
SN - 978-989-8565-77-8
AU - Luukka P.
AU - Fedrizzi M.
AU - Niyigena L.
AU - Collan M.
PY - 2013
SP - 193
EP - 200
DO - 10.5220/0004552601930200