A DPLL Procedure for the Propositional Product Logic

Dušan Guller


In the paper, we investigate the deduction problem of a formula from a finite theory in the propositional Product logic from a perspective of automated deduction.Our approach is based on the translation of a formula to an equivalent satisfiable finite order clausal theory, consisting of order clauses. An order clause is a finite set of order literals of the form $\varepsilon_1\diamond \varepsilon_2$ where $\varepsilon_i$ is either a conjunction of propositional atoms or the propositional constant $\gz$ (false) or $\gu$ (true), and $\diamond$ is a connective either $<$ or $=$. $<$ and $=$ are interpreted by the equality and standard strict linear order on $[0,1]$, respectively. A variant of the DPLL procedure, operating over order clausal theories, is proposed. The DPLL procedure is proved to be refutation sound and complete for finite order clausal theories.


  1. Aguzzoli, S. and Ciabattoni, A. (2000). Finiteness in infinite-valued Lukasiewicz logic. Journal of Logic, Language and Information, 9(1):5-29.
  2. Anderson, R. and Bledsoe, W. W. (1970). A linear format for resolution with merging and a new technique for establishing completeness. J. ACM, 17(3):525-534.
  3. Beckert, B., Hähnle, R., and Manyà, F. (2000). The SAT problem of signed CNF formulas. In Basin, D., DAgostino, M., Gabbay, D., Matthews, S., and Viganò, L., editors, Labelled Deduction, volume 17 of Applied Logic Series, pages 59-80. Springer Netherlands.
  4. Biere, A., Heule, M. J., van Maaren, H., and Walsh, T. (2009). Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, Amsterdam.
  5. Davis, M., Logemann, G., and Loveland, D. (1962). A machine program for theorem-proving. Commun. ACM, 5(7):394-397.
  6. Davis, M. and Putnam, H. (1960). A computing procedure for quantification theory. J. ACM, 7(3):201-215.
  7. de la Tour, T. B. (1992). An optimality result for clause form translation. J. Symb. Comput., 14(4):283-302.
  8. Guller, D. (2009). On the refutational completeness of signed binary resolution and hyperresolution. Fuzzy Sets and Systems, 160(8):1162 - 1176. Featured Issue: Formal Methods for Fuzzy Mathematics, Approximation and Reasoning, Part II.
  9. Guller, D. (2010). A DPLL procedure for the propositional Gödel logic. In Filipe, J. and Kacprzyk, J., editors, IJCCI (ICFC-ICNC), pages 31-42. SciTePress.
  10. Guller, D. (2012). On the satisfiability and validity problems in the propositional Gödel logic. In Madani, K., Dourado Correia, A., Rosa, A., and Filipe, J., editors, Computational Intelligence, volume 399 of Studies in Computational Intelligence, pages 211-227. Springer Berlin / Heidelberg.
  11. Hähnle, R. (1994a). Many-valued logic and mixed integer programming. Ann. Math. Artif. Intell., 12(3-4):231- 263.
  12. Hähnle, R. (1994b). Short conjunctive normal forms in finitely valued logics. J. Log. Comput., 4(6):905-927.
  13. Hähnle, R. (1996). Exploiting data dependencies in manyvalued logics. Journal of Applied Non-Classical Logics, 6(1):49-69.
  14. Hähnle, R. (1997). Proof theory of many-valued logiclinear optimization-logic design: connections and interactions. Soft Comput., 1(3):107-119.
  15. Hájek, P., Godo, L., and Esteva, F. (1996). A complete many-valued logic with product-conjunction. Arch. Math. Log., 35(3):191-208.
  16. Manyà, F., Béjar, R., and Escalada-Imaz, G. (1998). The satisfiability problem in regular CNF-formulas. Soft Comput., 2(3):116-123.
  17. Metcalfe, G., Olivetti, N., and Gabbay, D. M. (2004). Analytic calculi for product logics. Arch. Math. Log., 43(7):859-890.
  18. Mundici, D. (1987). Satisfiability in many-valued sentential logic is NP-complete. Theor. Comput. Sci., 52:145- 153.
  19. Nonnengart, A., Rock, G., and Weidenbach, C. (1998). On generating small clause normal forms. In Kirchner, C. and Kirchner, H., editors, CADE, volume 1421 of Lecture Notes in Computer Science, pages 397-411. Springer.
  20. Plaisted, D. A. and Greenbaum, S. (1986). A structurepreserving clause form translation. J. Symb. Comput., 2(3):293-304.
  21. SavickÉ, P., Cignoli, R., Esteva, F., Godo, L., and Noguera, C. (2006). On Product logic with truth-constants. J. Log. Comput., 16(2):205-225.
  22. Sheridan, D. (2004). The optimality of a fast CNF conversion and its use with SAT. In SAT.

Paper Citation

in Harvard Style

Guller D. (2013). A DPLL Procedure for the Propositional Product Logic . In Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013) ISBN 978-989-8565-77-8, pages 213-224. DOI: 10.5220/0004557402130224

in Bibtex Style

author={Dušan Guller},
title={A DPLL Procedure for the Propositional Product Logic},
booktitle={Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013)},

in EndNote Style

JO - Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: FCTA, (IJCCI 2013)
TI - A DPLL Procedure for the Propositional Product Logic
SN - 978-989-8565-77-8
AU - Guller D.
PY - 2013
SP - 213
EP - 224
DO - 10.5220/0004557402130224