Detecting and Explaining Business Exceptions for Risk Assessment

Lingzhe Liu, Hennie Daniels, Wout Hofman

Abstract

Systematic risk analysis can be based on causal analysis of business exceptions. In this paper we describe the concepts of automatic analysis for the exceptional patterns which are hidden in a large set of business data. These exceptions are interesting to be investigated further for their causes and explanations. The analysis process is driven by diagnostic drill-down operations following the equations of the information structure in which the data are organised. Using business intelligence, the analysis method can generate explanations supported by the data.

References

  1. Alles, M. G.., Kogan, A., Vasarhelyi, M. A. & Wu, J. 2010. Analytical Procedures for Continuous Data Level Auditing: Continuity Equations. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10. 1.1.174.240 [Accessed February 3, 2013].
  2. Bay, S., Kumaraswamy, K., Anderle, M. G., Kumar, R. & Steier., D. M. 2006. Large scale detection of irregularities in accounting data in Data Mining, 2006. ICDM'06. Sixth International Conference on. IEEE, pp. 75-86.
  3. Caron, E. A. M. & Daniels, H. A. M. 2009. Business Analysis in the OLAP Context in J. Cordeiro et al. eds., ICEIS 2009. Milan, Italy, pp. 325-330.
  4. Caron, E. A. M. 2012. Explanation of Exceptional Values in Multi-dimensional Business Databases. Erasmus University Rotterdam. Available at: http://www. emielcaron.nl/papers/Thesis.pdf.
  5. Caron, E. A. M. & Daniels, H. A. M. 2008. Explanation of exceptional values in multi-dimensional business databases. European Journal of Operational Research, 188(3), pp.884-897.
  6. Davenport, T. 2006. Competing on analytics. harvard business review, 84(1), pp.98-107.
  7. Feelders, A. & Daniels, H. A. M. 2001. A general model for automated business diagnosis. European Journal of Operational Research, 130(3), pp.623-637.
  8. Feelders, A. & Daniels, H. A. M. 2000. Methodological and practical aspects of data mining. Information & Management, 37(5), pp.271-281.
  9. Hofman, W. 2013. Compliance management by business event mining in supply chain networks in VMBO. Delft, the Netherlands.
  10. Keil, F. C. 2006. Explanation and understanding. Annual review of psychology, 57, pp.227-54.
  11. Lund, M.S., Solhaug, B. & Stølen, K. 2011. Model-driven risk analysis: the CORAS approach. Springer-Verlag Berlin Heidelberg.
  12. Milliken, F. J. 1987. Three Types of Perceived Uncertainty about the Environment: State, Effect, and Response Uncertainty. The Academy of Management Review, 12(1), p.133.
  13. Sodhi, M. S. & Tang, C. S. 2009. Managing Supply Chain Disruptions via Time-Based Risk Management in T. Wu et al. eds., Managing Supply Chain Risk and Vulnerability. London: Springer, pp. 29-40.
  14. Vasarhelyi, M. A., Alles, M. G. & Kogan, A. 2004. Principles of analytic monitoring for continuous assurance. Journal of Emerging Technologies in Accounting, 1(1), pp.1-21.
Download


Paper Citation


in Harvard Style

Liu L., Daniels H. and Hofman W. (2013). Detecting and Explaining Business Exceptions for Risk Assessment . In Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS, ISBN 978-989-8565-59-4, pages 530-535. DOI: 10.5220/0004569905300535


in Bibtex Style

@conference{iceis13,
author={Lingzhe Liu and Hennie Daniels and Wout Hofman},
title={Detecting and Explaining Business Exceptions for Risk Assessment},
booktitle={Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS,},
year={2013},
pages={530-535},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004569905300535},
isbn={978-989-8565-59-4},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 15th International Conference on Enterprise Information Systems - Volume 1: ICEIS,
TI - Detecting and Explaining Business Exceptions for Risk Assessment
SN - 978-989-8565-59-4
AU - Liu L.
AU - Daniels H.
AU - Hofman W.
PY - 2013
SP - 530
EP - 535
DO - 10.5220/0004569905300535