Computational Fluid Dynamic Solver based on Cellular Discrete-Event Simulation

Michael Van Schyndel, Gabriel Wainer, Mohammad Moallemi

Abstract

Computational Fluid Dynamics (CFD) deals with computing the equations of fluid flows using numerical methods. The Discrete-Event System specification (DEVS) theory has been used to approximate the continuous systems by applying a quantized state system approach. In this research, we employ Cellular DEVS theory (Cell-DEVS) – originally proposed for modeling and simulation of spatial environments – to create a uniform set of rules for CFD. This harmonized set of state changes can effectively render the fluid dynamics, by applying the accurate rule that represents the behavior of the fluid. The combination of the simplicity and the mathematical backbone allows for constructing models computable on an average computer or an array of cluster computers.

References

  1. Anderson, J., 2009. Basic philosophy of CFD. In: Computational Fluid Dynamics. pp. 3-14.
  2. Chen, S. and Doolen. G. 1998. Lattice Boltzman Method for Fluid Flows. Annual Review of Fluid Mechanics, Volume 30, pp. 329-364 .
  3. Currie, I. G., 1974. Fundamental Mechanics of Fluids. McGraw-Hill, Inc.
  4. Frisch U, Hasslacher B, Pomeau Y. 1986. Lattice-gas automata for the Navier- Stokes equation. Phys Rev Let 56:1505-1508G
  5. Ilachinski, A., 2001. Cellular Automata: A Discrete Universe. World Scientific Publishing Co.
  6. Koelman, J., 1992. Cellular-Automata-Based Computer Simulations of Polymer Fluids. Lecture notes in Physics, Volume 398, pp. 146-153.
  7. Koelman, J. & Nepveu, M., 1992. Darcy flow in porus media: Cellular Automata Simulations. Lecture notes in Physics, Volume 398, pp. 136-145.
  8. Saleh, J. M., 2002. Fluid flow handbook. New York: McGraw-Hill.
  9. Stam, J., 2003. Real-Time Fluid Dynamics for Games. Proceedings of the Game Developer Conference.
  10. Sukop, M. C. & Thorne, D. T. J., 2006. Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers.:Springer.
  11. Toro, E. F., 2009. Rienmann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction. 3rd Edition ed. Berlin Heidelberg: Springer-Verlag .
  12. Wainer, G., 2009. Discrete-event modeling and simulation: a practioner's approach.:CRC.
  13. Zeigler, B. P.; Praehofer, H.; and Kim, Tag-Gon. 2000. Theory of Modeling and Simulation. Academic Press.
Download


Paper Citation


in Harvard Style

Van Schyndel M., Wainer G. and Moallemi M. (2013). Computational Fluid Dynamic Solver based on Cellular Discrete-Event Simulation . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-8565-69-3, pages 217-223. DOI: 10.5220/0004593902170223


in Bibtex Style

@conference{simultech13,
author={Michael Van Schyndel and Gabriel Wainer and Mohammad Moallemi},
title={Computational Fluid Dynamic Solver based on Cellular Discrete-Event Simulation},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2013},
pages={217-223},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004593902170223},
isbn={978-989-8565-69-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Computational Fluid Dynamic Solver based on Cellular Discrete-Event Simulation
SN - 978-989-8565-69-3
AU - Van Schyndel M.
AU - Wainer G.
AU - Moallemi M.
PY - 2013
SP - 217
EP - 223
DO - 10.5220/0004593902170223