User Interest Extraction based on Weighted Tags

Saida Kichou, Hakima Mellah, Imene Lasbeur, Imen Abdelouahid

Abstract

Collaborative tagging systems are based on assigning keywords freely chosen by users, which promotes ressources sharing and organization by the way and improves the information retrieval. The tags allocation by users is illustrated particularly in sites sharing photos or videos (Flickr, YouTube). As navigations and clicks, tags can be good indicators of the user's interests. In this paper, we examine the limitations of previous tag-based profile extraction. We believe that for a better result, tags of a resource must represent well its content. Existing systems consider ‘Popularity’ as the unique criterion to judge the tag effectiveness. But it does not always reflect its importance and representativeness to the resource. In this paper, we propose a novel approach based on tag strength to represent a user. In which we introduce weighted tags based on user expertise.

References

  1. Abel, F., Araújo, S., Gao, Q., &Houben, G. J.: Analyzing Cross-System User Modeling on the Social Web. International Conference on Web Engineering (ICWE'11), Vol 6757, pp28-43. Springer. DOI=http://dx.doi.org/10.1007/978-3-642-22233-7_3. (2011)
  2. Amato, G., Straccia, U.: User Profile Modeling and Applications to Digital Libraries.In: Proceedings of the Third European Conference on Research and Advanced Technology for Digital Libraries, Paris, France (1999)
  3. Broudoux, E.: Folksonomie et indexation collaborative, rôle des réseaux sociaux dans la fabrique de l'information. In: Collaborative Web Tagging Workshop at WWW 2006, Edinburgh, Scotland (May 2006)
  4. Bouzeghoub, M., Kostadinov, D.: Personnalisation de l'information: aperçu de l'état de l'art et définition d'un modèle flexible de profils.In: Proceedings of Actes de la Conférence francophone en Recherche d'Information et Applications CORIA 2005, pp. 201-218 (2005)
  5. Cattuto, C., Schmitz, C., Baldassarri, A., Servedio, V.D.P., Loreto, V., Hotho, A., Grahl, M., Stumme, G.: Network properties of folksonomies. AI Communications Journal, Special Issue on Network Analysis in Natural Sciences and Engineering (2007)
  6. Carmagnola, F., Cena, F., Console, L., Cortassa, O., Gena, C., Goy, A., Torre, I.: Tag based User Modeling for Social Multi-Device Adaptive Guides. Special issue on Personalizing Cultural Heritage Exploration (2008)
  7. Carmagnola, F., Cena, F., Cortassa, O., Gena, C., Torre, I: Towards a tag-based user model: how can user model benefit From tags? In: Proceedings of the International Conference on User Modeling.Corfù, Greece. Lecture notes in Computer Science, pp. 445-449. Springer. (2007)
  8. Cayzer, S., Michlmayr, E.: Adaptive user profiles: Chapitre de livre Collaborative and social Information Retrieval and Access; ISBN-13: 9781605663067,(2009)
  9. De Meo,P., Quattrone,G., Ursino, D.: A query expansion and user profile enrichment approach to improve the performance of recommender systems operating on a folksonomy. In User Modeling and User-Adapted Interaction 20:41-86 DOI 10.1007/s11257-010-9072- 6,(2010)
  10. Firan.S, Nejdl.W, Paiu.R.: The Benefit of Using Tag-Based Profiles. Proceedings of the 2007 Latin American Web Conference LA-WEB, page 32-41. Washington, DC, USA, IEEE Computer Society, (2007)
  11. Golder Scott, A., Huberman, B.A.: The Structure of Collaborative Tagging System. Journal of Information Science 32(2), 198-208 (2005)
  12. Gupta, M., Li, R., Yin, Z., Han, J. 2010. : Survey on social tagging techniques. In SIGKDD Explorations 12(1): 58-72. DOI=http://doi.acm.org/10.1145/1882471.1882480,(2010)
  13. Helic, D., Trattnery, C., Strohmaier, M., Andrews, K.. On the Navigability of Social Tagging Systems. In socialCom/PASSAT, 161-168. IEEE Computer Society, (2010).DOI= http://dx.doi.org/10.1109/SocialCom.2010.31,(2010)
  14. Huang, Y., Hung, C., Hsu, J.: You are what you tag. In Association for the Advancement of Artificial Intelligence, http://www.aaai.org.(2008)
  15. Kichou, S., Mellah,H., Amghar,Y,. Dahak,F.: Weighting Tags Approach Based on User Profile . International Conference on Active Media Technology (AMT 2011), Lanzhou, China September 7-9, (2011).
  16. Mathes, A.: Folksonomies - Cooperative Classification and Communication Through shared Metadata. Rapport interne, GSLIS, Univ. Illinois Urbana- Champaign (2004)
  17. Marlow, C., Mor, N., Danah, B., Marc, D.: Tagging, taxonomy, flickr, article, toread. In: Collaborative Web Tagging Workshop at WWW 2006, Edinburgh, UK (2006)
  18. Mezghani,M,. A User Profile Modelling Using Social Annotations: A Survey, WWW 2012 - MultiAPro'12 Workshop, Lyon. France,(2012)
  19. Michlmayr,E., Cayzer,S. : Learning User Profiles from Tagging Data and Leveraging them for Personalized Information Access. WWW2007, May 8-12, 2007, Banff, Canada.
  20. Schöfegger.K, Körner.C : Learning User Characteristics from Social Tagging Behavior. HT'12, June 25-28, 2012, Milwaukee, Wisconsin, USA. (2012)
  21. Sigurbjörnsson,B., and Zwol,R,V.: Flickr tag recommendation based on collective knowledge, in WWW'08. In Proceedings of the 17th international conference on World Wide Web (WWW 7808). ACM, New York,USA, (2008)
  22. Tamine-Lechani, L., Zemirli, N., Bahsoun, W.: Approche statistique pour la définition du profil d'un utilisateur de système de recherche d'informations. In: Actes de la Conférence francophone en Recherche d'Information et Applications (CORIA 2006), Lyon, France (2006).
  23. Vanderwal, T.: Explaining and Showing Broad and Narrow Folksonomies, http://www.vanderwal.net/random/entrysel.php?blog=1635, (2005)
  24. Yahia,S. et al. "Efficient network aware search in collaborative tagging sites", In VLDB'08, pp. 710-721, (2008)
  25. Zayani, C. A. Contribution à la définition et à la mise en oeuvre de mécanismes d'adaptation de documents semi-structurés. Doctoral Thesis. University of Toulouse. (2008)
Download


Paper Citation


in Harvard Style

Kichou S., Mellah H., Lasbeur I. and Abdelouahid I. (2013). User Interest Extraction based on Weighted Tags . In Proceedings of the 2nd International Workshop on Web Intelligence - Volume 1: WEBI, (ICEIS 2013) ISBN 978-989-8565-63-1, pages 22-31. DOI: 10.5220/0004599300220031


in Bibtex Style

@conference{webi13,
author={Saida Kichou and Hakima Mellah and Imene Lasbeur and Imen Abdelouahid},
title={User Interest Extraction based on Weighted Tags},
booktitle={Proceedings of the 2nd International Workshop on Web Intelligence - Volume 1: WEBI, (ICEIS 2013)},
year={2013},
pages={22-31},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004599300220031},
isbn={978-989-8565-63-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 2nd International Workshop on Web Intelligence - Volume 1: WEBI, (ICEIS 2013)
TI - User Interest Extraction based on Weighted Tags
SN - 978-989-8565-63-1
AU - Kichou S.
AU - Mellah H.
AU - Lasbeur I.
AU - Abdelouahid I.
PY - 2013
SP - 22
EP - 31
DO - 10.5220/0004599300220031