On the Implementation of a Non-linear Viscoelastic Model into Coupled Blood Flow-biochemistry Model

Tomas Bodnár, Adelia Sequeira

Abstract

This paper presents selected numerical results obtained using a macroscopic blood coagulation model coupled with a non-linear viscoelastic model for blood flow. The governing system is solved using a central finitevolume scheme employing an explicit Runge-Kutta time-integration. An artificial compressibility method is used to resolve the pressure. A non-linear TVD filter is applied for stabilization. A simple test case of blood flow over a clotting surface in a straight 3D vessel is solved. This work merges and significantly extends our previous studies (Bodnár and Sequeira, 2008) and (Bodnár et al., 2011a).

References

  1. Ambrosi, D., Quarteroni, A., and Rozza, G., editors (2012). Modeling of Physiological Flows, volume 5 of Modeling, Simulation & Applications. Springer.
  2. Anand, M. and Rajagopal, K. (2004). A shear-thinning viscoelastic fluid model for describing the flow of blood. Intern. Journal of Cardiovasc. Medicine and Sci., 4(2):59-68.
  3. Anand, M., Rajagopal, K., and Rajagopal, K. R. (2003). A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. Journal of Theoretical Medicine, 5(3-4):183-218.
  4. Anand, M., Rajagopal, K., and Rajagopal, K. R. (2005). A model for the formation and lysis of blood clots. Pathophysiol. Haemost. Thromb., 34:109-120.
  5. Anand, M., Rajagopal, K., and Rajagopal, K. R. (2008). A model for the formation, growth and lysis of clots in quiescent plasma. A comparison between the effects of antithrombin III deficiency and protein C deficiency. J. Theor. Biol., 253:725-738.
  6. Anand, M. and Rajagopal, K. R. (2002). A mathematical model to describe the change in the constitutive character of blood due to platelet activation. Comptes Rendues Mechaniques, 330:557-562.
  7. Ataullakhanov, F., Zarnitsina, V., Pokhilko, A., Lobanov, A., and Morozova, O. (2002). Spatio-temporal dynamics of blood coagulation and pattern formation. A theoretical approach. International Journal of Bifurcation and Chaos, 12(9):1985-2002.
  8. Bodnár, T. (2012). On the use of non-linear TVD filters in finite-volume simulations. In Algoritmy 2012 Proceedings of Contributed Papers and Posters., pages 190-199, Bratislava. Slovak University of Technology, Faculty of Civil Engineering.
  9. Bodnár, T. and P?ríhoda, J. (2006). Numerical simulation of turbulent free-surface flow in curved channel. Journal of Flow, Turbulence and Combustion, 76(4):429-442.
  10. Bodnár, T., Rajagopal, K., and Sequeira, A. (2011a). Simulation of the three-dimensional flow of blood using a shear-thinning viscoelastic fluid model. Mathematical Modelling of Natural Phenomena, 6(5):1-24.
  11. Bodnár, T. and Sequeira, A. (2008). Numerical simulation of the coagulation dynamics of blood. Computational and Mathematical Methods in Medicine, 9(2):83-104.
  12. Bodnár, T. and Sequeira, A. (2010). Numerical study of the significance of the non-Newtonian nature of blood in steady flow through a stenosed vessel. In Rannacher, R. and Sequeira, A., editors, Advances in Mathematical Fluid Mechanics, pages 83-104. Springer Verlag.
  13. Bodnár, T., Sequeira, A., and Pirkl, L. (2009). Numerical simulations of blood flow in a stenosed vessel under different flow rates using a generalized Oldroyd-B model. In Numerical Analysis and Applied Mathematics, volume 2, Melville, New York. American Institute of Physics.
  14. Bodnár, T., Sequeira, A., and Prosi, M. (2011b). On the shear-thinning and viscoelastic effects of blood flow under various flow rates. Applied Mathematics and Computation, 217(11):5055-5067.
  15. Butenas, S. and Mann, K. G. (2002). Blood coagulation. Biochemistry (Moscow), 67(1):3-12. Translated from Biokhimiya, Vol. 67, No. 1, 2002, pp. 5-15.
  16. Cangiani, A., Davidchack, R., Georgoulis, E., Levesley, A. G. J., and Tretyakov, M., editors (2013). NumerEngquist, B., L ötstedt, P., and Sjögreen, B. (1989). Nonlinear filters for efficient shock computation. Mathematics of Computation, 52(186):509-537.
  17. Fasano, A., Santos, R., and Sequeira, A. (2012). Blood coagulation: a puzzle for biologists, a maze for mathematicians. In (Ambrosi et al., 2012), chapter 3, pages 41-75.
  18. Galdi, G., Rannacher, R., Robertson, A., and Turek, S., editors (2008). Hemodynamical Flows - Modeling, Analysis and Simulation, volume 37 of Oberwolfach Seminars. Birkäuser.
  19. Gambaruto, A., Janela, J., Moura, A., and Sequeira, A. (2011). Sensitivity of hemodynamics in a patient specific cerebral aneurysm to vascular geometry and blood rheology. Mathematical Biosciences and Engineering, 8(2):409-423.
  20. Jameson, A. (1991). Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings. In AIAA 10th Computational Fluid Dynamics Conference, Honolulu. AIAA Paper 91- 1596.
  21. Jameson, A., Schmidt, W., and Turkel, E. (1981). Numerical solutions of the Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. In AIAA 14th Fluid and Plasma Dynamic Conference, Palo Alto. AIAA paper 81-1259.
  22. Janela, J., Moura, A., and Sequeira, A. (2010). Absorbing boundary conditions for a 3D non-Newtonian fluidstructure interaction model for blood flow in arteries. International Journal of Engineering Science, 48(11):1332-1349.
  23. Keslerová, R. (2013). Numerical study of effect of stress tensor for viscous and viscoelastic fluids flow. In (Cangiani et al., 2013), pages 529-538. Proceedings of ENUMATH 2011, the 9th European Conference on Numerical Mathematics and Advanced Applications, Leicester, September 2011.
  24. Keslerová, R. and Kozel, K. (2011). Numerical solution of laminar incompressible generalized newtonian fluids flow. Applied Mathematics and Computation, 217(11):5125-5133.
  25. Kuharsky, A. L. and Fogelson, A. L. (2001). Surfacemediated control of blood coagulation: the role of binding site densities and platelet deposition. Biophysical Journal, 80:1050-1074.
  26. Mann, K., Brummel-Ziedins, K., Orfeo, T., and Butenas, S. (2006). Models of blood coagulation. Blood Cells, Molecules, and Diseases, 36:108-117.
  27. Pirkl, L., Bodnár, T., and T u°ma, K. (2011). Viscoelastic fluid flows at moderate weissenberg numbers using oldroyd type model. In AIP Conference Proceedings, volume 1389, pages 102-105. American Institute of Physics.
  28. Rajagopal, K. and Srinivasa, A. (2000). A thermodynamic frame work for rate type fluid models. Journal of NonNewtonian Fluid Mechanics, 80:207-227.
  29. Robertson, A., Sequeira, A., and Kameneva, M. (2007). Hemodynamical Flows: Modelling, Analysis and Simulation, chapter Hemorheology. Birkhäuser. in press.
  30. Robertson, A., Sequeira, A., and Owens, R. (2008). Cardiovascular Mathematics, chapter Rheological models for blood. Springer-Verlag. to appear.
  31. Sequeira, A., Santos, R. F., and Bodnár, T. (2011). Blood coagulation dynamics: Mathematical modeling and stability results. Mathematical Biosciences and Engineering, 8(2):425-443.
  32. Shyy, W., Chen, M.-H., Mittal, R., and Udaykumar, H. (1992). On the suppression of numerical oscillations using a non-linear filter. Journal of Computational Physics, 102:49-62.
  33. Zarnitsina, V. I., Pokhilko, A. V., and Ataullakhanov, F. I. (1996). A mathematical model for the spatiotemporal dynamics of intrinsic pathway of blood coagulation - I. The model description. Thrombosis Research, 84(4):225-236.
Download


Paper Citation


in Harvard Style

Bodnár T. and Sequeira A. (2013). On the Implementation of a Non-linear Viscoelastic Model into Coupled Blood Flow-biochemistry Model . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013) ISBN 978-989-8565-69-3, pages 652-657. DOI: 10.5220/0004621306520657


in Bibtex Style

@conference{biomed13,
author={Tomas Bodnár and Adelia Sequeira},
title={On the Implementation of a Non-linear Viscoelastic Model into Coupled Blood Flow-biochemistry Model},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)},
year={2013},
pages={652-657},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004621306520657},
isbn={978-989-8565-69-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: BIOMED, (SIMULTECH 2013)
TI - On the Implementation of a Non-linear Viscoelastic Model into Coupled Blood Flow-biochemistry Model
SN - 978-989-8565-69-3
AU - Bodnár T.
AU - Sequeira A.
PY - 2013
SP - 652
EP - 657
DO - 10.5220/0004621306520657