Mobile App and Website for Major Depression Monitoring

Àngela Nebot, Francisco Mugica, Luca Abdollahi

Abstract

One of the challenges for the patients diagnosed with major depression is not to experience relapse or reoccurrence which are very common characteristics of major depression. Providing constant monitoring of these patients during their daily life for the first year of their depression can have a significant impact on preventing these patients to experience reoccurrence and relapse. In this paper we describe an intelligent remote monitoring system that is in the process of development and present the new research done centered on the interaction between the system and the actors involved, i.e. patients, psychiatrists and primary care physicians. This interaction is done through an android application for mobile telephones and a Website. The specification and design of the information requested and submitted to system actors through both platforms is performed by the communication module, which is also described in this research.

References

  1. Bratko, I. & Mozina, M. (2004). Argumentation and Machine learning. Chapter 5 of Theoretical framework for argumentation, ASPIC project, deliverable D2.1.
  2. Bratko, I., Mozina, M. & Zabkar, J. (2006). ArgumentBased Machine Learning. Lecture Notes in Artificial Intelligence, 4203, 11-17.
  3. Brugha, T., Bebbington, P., Tennant, C., Hurry, J. (1985). The List of Threatening Experiences: a subset of 12 live event categories with considerable long-term contextual threat. Psychological Medicine, 15, 189- 194.
  4. Cuijpers P., Beekman A. F., Reynolds, C. F. (2012). Preventing depression global priority. JAMA, 307(10), 1033-1034.
  5. Ebmeier, K. P., Donaghey, C., Steele, J. D. (2006). Recent developments and current controversies in depression, Lancet, 367(9505), 153-67.
  6. Escobet, A., Nebot, A., Cellier, F. E. (2008). Visual-FIR: A tool for model identification and prediction of dynamical complex systems, Simulation Practice and Theory, 16, 76-92.
  7. Fava, M. (2003). Diagnosis and definition of treatmentresistant depression. Biological Psychiatry, 53, 649- 659.
  8. Mugica, F., Nebot, A., Bagherpour, S., Serrano-Blanco, A., Baladón, L. (2012). MADRIM: A major depression remote intelligent monitor. In Proceedings of the WCCI'12: IEEE World Congress on Computational Intelligence (FUZZ-IEEE), Brisbane, 10-15 June.
  9. Pinto-Meza, A., Suárez, D., Caseras, X., Haro, J. M., Serrano-Blanco, A., Torrubia, R. (2009). Evaluación telefónica de los sistemas de activación e inhibición conductual, Revista de psiquiatría y salud mental, 2(2), 66-71.
  10. Sheehan, D. V., Lecrubier, Y., Harnett-Sheehan, K., Janavs, J.,Weiller, E., Bonora, L. I., Keskiner, A., Schinka, J., Knapp, E., Sheehan, M. F., Dunbar, G. C. (1997). Reliability and Validity of the MINI International Neuropsychiatric Interview (MINI): According to the SCID-P. European Psychiatry, 12, 232-241.
  11. The Macarthur initiative on dperession and primary care (2013): http://www.depression-primarycare.org/ clinicians/ toolkits/materials/forms/phq9/
  12. Waraich P., Goldner E. M., Somers J. M., Hsu L. (2004). Prevalence and incidence studies of mood disorder: a systematic review of the literature. Can J Psychiatry., 49(2), 124-138.
  13. WHO: Depression (2012). From http://www.who.int/ topics/depression/en/
Download


Paper Citation


in Harvard Style

Nebot À., Mugica F. and Abdollahi L. (2013). Mobile App and Website for Major Depression Monitoring . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: HA, (SIMULTECH 2013) ISBN 978-989-8565-69-3, pages 605-612. DOI: 10.5220/0004621606050612


in Bibtex Style

@conference{ha13,
author={Àngela Nebot and Francisco Mugica and Luca Abdollahi},
title={Mobile App and Website for Major Depression Monitoring},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: HA, (SIMULTECH 2013)},
year={2013},
pages={605-612},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004621606050612},
isbn={978-989-8565-69-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: HA, (SIMULTECH 2013)
TI - Mobile App and Website for Major Depression Monitoring
SN - 978-989-8565-69-3
AU - Nebot À.
AU - Mugica F.
AU - Abdollahi L.
PY - 2013
SP - 605
EP - 612
DO - 10.5220/0004621606050612