Modeling Interdependent Socio-technical Networks via ABM - Smart Grid Case

Daniel Worm, David Langley, Julianna Becker

Abstract

The objective of this paper is to improve scientific modeling of interdependent socio-technical networks. In these networks the interplay between technical or infrastructural elements on the one hand and social and behavioral aspects on the other hand, is of importance. Examples include electricity networks, financial networks, residential choice networks. We propose an Agent-Based Model approach to simulate interdependent technical and social network behavior, the effects of potential policy measures and the societal impact when disturbances occur, where we focus on a use case concerning the smart grid, an intelligent system for matching supply and demand of electricity.

References

  1. Ajzen, I., 1991. The theory of planned behaviour, Organizational Behavior and Human Decision Processes, 50(2): 179-211.
  2. Ajzen, I. and Fishbein, M., 1980. Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
  3. Baarsma, B., Berkhout, P., Hop, P., 2004. Op prijs gesteld, maar ook op kwaliteit. Technisch rapport, SEO, Amsterdam.
  4. Bagozzi, R. P., 1992. The Self-Regulation of Attitudes, Intentions, and Behavior, Social Psychology Quarterly, 55(2): 178-204.
  5. Benenson, I., 2004. Agent-based modeling: From individual residential choice to urban residential dynamics, in Spatially Integrated Social Science: Examples in Best Practice, Oxford Univ. Press, Oxford, U.K.
  6. Boin, A., McConnell, A., 2007. Preparing for Critical Infrastructure Breakdowns: The Limits of Crisis Management and the Need for Resilience. Journal of Contingencies and Crisis Management, 15(1): 50-59.
  7. Bruch, E., Mare D., 2012. Residential Mobility, and Neighborhood Change. Sociological Methodology, 42: 103-154.
  8. Clastres, C., 2011. Smart Grids: Another step towards competition, energy security and climate change objectives. Energy Policy 39(9), 5399-5408.
  9. Dam, K. van, Nikolic, I., Lukszo, Z., 2012. Agent-based modelling of socio-technical systems. Springer: Dordrecht, Netherlands.
  10. Devisch O., Timmermans H., Arentze T., Borgers A., 2009. An agent-based model of residential choice dynamics in nonstationary housing markets. Environment and Planning A, 41(8): 1997 - 2013.
  11. Erlingsson, E., Raberto, M., Stefánsson, H., Sturluson, J., 2013. Integrating the housing market into an agentbased economic model. Managing Market Complexity, Lecture Notes in Economics and Mathematical Systems 662: 65-76.
  12. Fishbein, M., Ajzen, I., 1975. Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Reading, MA: Addison-Wesley.
  13. Gottwalt, S., Ketter, W., Block, C., Collins, J., Weinhardt, C., 2011. Demand side management - A simulation of household behavior under variable prices. Energy Policy, 39: 8163-8174.
  14. Guo, Y., Li, R., Poulton, G., Zeman, A., 2008. A Simulator for Self-Adaptive Energy Demand Management. In IEEE Conf. on Self-Adaptive and Self-Organizing Systems.
  15. Holling, C., 1973. Resilience and stability of ecological systems. Annual Review of Ecological Systems 4:1-23.
  16. Jackson, M., 2008. Social and Economic Networks (Economics, Physics, Sociology), Princeton Univ. Press.
  17. Johnsen, S., Veen, M., 2013. Risk assessment and resilience of critical communication infrastructure in railways. Cognition, Technology & Work, 15(1): 95- 107.
  18. Khanin, R., Wit, E., 2006. How scale-free are biological networks. J. Comput. Biol., 13: 810-818.
  19. Kleinberg, J., 2008. The convergence of social and technological networks. Commun. ACM, 51: 66-72.
  20. Langley, D.J., Bijmolt, T.H.A., Ortt, J.R., and Pals, N. (2012) Determinants of Social Contagion During New Product Adoption, Journal of Product Innovation Management, 29(4): 623-638.
  21. Macy, M., Wilier, R., 2002. From Factors to Actors: Computational Sociology and Agent-Based Modeling. Annual Review of Sociology, 28:143-66.
  22. McDaniels, T., Chang, S., Cole, D., Mikawoz, J., Longstaff, H., 2008. Fostering resilience to extreme events within infrastructure systems: Characterizing decision contexts for mitigation and adaptation. Global Environmental Change,18(2): 310-318.
  23. North, M. J., Tatara, E., Collier, N.T., and Ozik, J. (2007) Visual agent-based model development with repast symphony, Agent 2007 Conference: Complex Interaction and Social Emergence, Argonne National Laboratory, Argonne, IL USA, 173-192.
  24. Ramchurn, S., Vytelingum, P., Rogers, A., Jennings, N., 2011. Agent-Based Control for Decentralised Demand Side Management in the Smart Grid. In Int. Conf. on Autonomous Agents and Multiagent Systems.
  25. Rand, W. and Rust, R.T. (2011) Agent-based modeling in marketing: Guidelines for rigor, International Journal of Research in Marketing, 28: 181-193.
  26. Reed, D., Kapur, K., Christie, R., 2009. Methodology for assessing the resilience of networked infrastructure. IEEE Systems Journal, 3(2): 174-180.
  27. Reddy, P., Veloso, M., 2012. Factored Models for Multiscale Decision-Making in Smart Grid Customers. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, 363-369.
  28. Sheppard, B., Hartwick, J. and Warshaw, P., 1988. The Theory of Reasoned Action - a Meta-Analysis of Past Research with Recommendations for Modifications and Future-Research. Journal of Consumer Research, 15(3): 325-343.
  29. Voice, T., Vytelingum, P., Ramchurn, S., Rogers, A., Jennings, N., 2011. Decentralised Control of MicroStorage in the Smart Grid. In AAAI Conf. on Artificial Intelligence (AAAI-11).
  30. Wood, A., Wollenberg, B., 1996. Power Generation, Operation, and Control, 2nd ed. New York: Wiley.
  31. Zhang, J., 2004. A Dynamic Model Of Residential Segregation. Journal of Mathematical Sociology, 28: 147-170.
  32. Zimmerman, R., Murillo-Sánchez, C., Thomas, R., 2011. MATPOWER: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education. Power Systems, IEEE Transactions on, 26(1): 12-19.
Download


Paper Citation


in Harvard Style

Worm D., Langley D. and Becker J. (2013). Modeling Interdependent Socio-technical Networks via ABM - Smart Grid Case . In Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-8565-69-3, pages 310-317. DOI: 10.5220/0004622503100317


in Bibtex Style

@conference{simultech13,
author={Daniel Worm and David Langley and Julianna Becker},
title={Modeling Interdependent Socio-technical Networks via ABM - Smart Grid Case},
booktitle={Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2013},
pages={310-317},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004622503100317},
isbn={978-989-8565-69-3},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 3rd International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Modeling Interdependent Socio-technical Networks via ABM - Smart Grid Case
SN - 978-989-8565-69-3
AU - Worm D.
AU - Langley D.
AU - Becker J.
PY - 2013
SP - 310
EP - 317
DO - 10.5220/0004622503100317