Fully Organic Graphene Oxide-based Sensor with Integrated Pump for Sodium Detection

Jingfeng Huang, James Harvey, Hu Chen, Steve Faulkner, James King, Myra A. Nimmo, Alfred Tok I. Y.

Abstract

Sweat is produced by the body naturally during physical activity and this fluid can be analysed in real-time to reflect the body’s hydration and electrolyte status. This paper reports a new type of organic disposable sensor pump that integrates sweat collection and sodium (Na+) ion sensing into cotton threads. This integration allows the sensor platform to be small, portable and wearable; thus allowing potential advantage to interface with the human body during field exercises enabling the provision of real-time data for immediate intervention. The sensor uses a sodium-selective Ion Selective Electrode (ISE) modified graphene oxide transducer intertwined with a thread pump. In this paper, we present the characterisation, synthesis and sensing data of this sensor.

References

  1. Baker, L. B., Stofan, J. R., Hamilton, A. A. & Horswill, C. A., 2009. Comparison of regional patch collection vs. whole body washdown for measuring sweat sodium and potassium loss during exercise. Journal of Applied Physiology, 107, 887-895.
  2. Costill, D. L., 1977. Sweating: Its Composition and Effects in Body Fluids. Annals of the New York Academy of Sciences, 301, 160-174.
  3. Gia, 2012. Biosensors in Medical Diagnostics. Global strategic business report. CA.
  4. He, Q., Sudibya, H. G., Yin, Z., Wu, S., Li, H., Boey, F., Huang, W., Chen, P. & Zhang, H., 2010. CentimeterLong and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications. ACS Nano, 4, 3201-3208.
  5. Huang, J., Harvey, J., Chen, H., Fam, W. H. D., Nimmo, M. A. & Tok, I. Y. A., 2013a. Growth of Graphene Oxide Using Ethanol CVD. Procedia Engineering.
  6. Huang, J., Harvey, J., Fam, W. H. D., Nimmo, M. A. & Tok, I. Y. A., 2013b. Novel Biosensor for Interleukin6 Detection. Procedia Engineering.
  7. Huang, J., Larisika, M., Fam, W. H. D., He, Q., Nimmo, M. A., Nowak, C. & Tok, A. I. Y., 2013c. The extended growth of graphene oxide flakes using ethanol CVD. Nanoscale, 5, 2945-2951.
  8. Huang, J., Larisika, M., Nowak, C. & Tok, I. Y. A., 2013d. New Methods in Aqueous Graphene (Graphene Oxide) Synthesis for Biosensor Devices.
  9. Larisika, M., Huang, J., Tok, A., Knoll, W. & Nowak, C., 2012. An improved synthesis route to graphene for molecular sensor applications. Materials Chemistry and Physics, 136, 304-308.
  10. Li, X., Tian, J. & Shen, W., 2009. Thread as a Versatile Material for Low-Cost Microfluidic Diagnostics. ACS Applied Materials & Interfaces, 2, 1-6.
  11. Mohanty, N. & Berry, V., 2008. Graphene-Based SingleBacterium Resolution Biodevice and DNA Transistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents. Nano Letters, 8, 4469- 4476.
  12. Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V. & Firsov, A. A., 2004. Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669.
  13. Ohno, Y., Maehashi, K., Yamashiro, Y. & Matsumoto, K., 2009. Electrolyte-Gated Graphene Field-Effect Transistors for Detecting pH and Protein Adsorption. Nano Letters, 9, 3318-3322.
  14. Patterson, M. J., Galloway, S. D. R. & Nimmo, M. A., 2000. Variations in Regional Sweat Composition in Normal Human Males. Experimental Physiology, 85, 869-875.
  15. Reches, M., Mirica, K. A., Dasgupta, R., Dickey, M. D., Butte, M. J. & Whitesides, G. M., 2010. Thread as a Matrix for Biomedical Assays. ACS Applied Materials & Interfaces, 2, 1722-1728.
  16. Schazmann, B., Morris, D., Slater, C., Beirne, S., Fay, C., Reuveny, R., Moyna, N. & Diamond, D., 2010. A wearable electrochemical sensor for the real-time measurement of sweat sodium concentration. Analytical Methods, 2, 342-348.
  17. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I. & Novoselov, K. S., 2007. Detection of individual gas molecules adsorbed on graphene. Nat Mater, 6, 652-655.
  18. Shateri-Khalilabad, M. & Yazdanshenas, M. E., 2013. Fabricating electroconductive cotton textiles using graphene. Carbohydrate Polymers, 96, 190-195.
  19. Weschler, L. B., 2008. Sweat electrolyte concentrations obtained from within occlusive coverings are falsely high because sweat itself leaches skin electrolytes. Journal of Applied Physiology, 105, 1376-1377.
Download


Paper Citation


in Harvard Style

Huang J., Harvey J., Chen H., Faulkner S., King J., A. Nimmo M. and Tok I. Y. A. (2013). Fully Organic Graphene Oxide-based Sensor with Integrated Pump for Sodium Detection . In Proceedings of the International Congress on Sports Science Research and Technology Support - Volume 1: icSPORTS, ISBN 978-989-8565-79-2, pages 83-88. DOI: 10.5220/0004636200830088


in Bibtex Style

@conference{icsports13,
author={Jingfeng Huang and James Harvey and Hu Chen and Steve Faulkner and James King and Myra A. Nimmo and Alfred Tok I. Y.},
title={Fully Organic Graphene Oxide-based Sensor with Integrated Pump for Sodium Detection},
booktitle={Proceedings of the International Congress on Sports Science Research and Technology Support - Volume 1: icSPORTS,},
year={2013},
pages={83-88},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004636200830088},
isbn={978-989-8565-79-2},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Sports Science Research and Technology Support - Volume 1: icSPORTS,
TI - Fully Organic Graphene Oxide-based Sensor with Integrated Pump for Sodium Detection
SN - 978-989-8565-79-2
AU - Huang J.
AU - Harvey J.
AU - Chen H.
AU - Faulkner S.
AU - King J.
AU - A. Nimmo M.
AU - Tok I. Y. A.
PY - 2013
SP - 83
EP - 88
DO - 10.5220/0004636200830088