Adaptive Deployment of a Mobile Sensors Network to Optimize the Monitoring of a Phenomenon Governed by Partial Differential Equations

Alban Vergnaud, Philippe Lucidarme, Laurent Autrique, Laetitia Perez

Abstract

This project is intended to develop a comprehensive methodology (theory and numerical methods) in order to achieve an optimal design of experiments in the context of nonlinear ill posed problems related to the evaluation of parameters in systems described by partial differential equations (PDE). An experimental prototype will be developed in order to validate the performance of different strategies to identify location of one (or more) heating source using a set of mobile sensors.

References

  1. Alifanov O. M., Artyukhin E.A., Rumyantsev S. V., 1995 “Extreme Methods for solving Ill Posed Problems with Applications to Inverse Heat Transfer Problems”, (1995), Begell House, New York.
  2. Autrique L., Ramdani N., Rodier S., 2005 “Mobile source estimation with an iterative regularization method”, 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge, UK, 11-15 July, (2005), 1, pp A08
  3. Beddiaf S., Autrique L., Perez L., Jolly J. C., 2012 “Heating sources localization based on inverse heat conduction problem resolution”, Sysid 2012, 16th IFAC Symposium on System Identification, Bruxelles.
  4. Beddiaf S., Autrique L., Perez L., Jolly J. C., 2012 “Timedependent heat flux identification: Application to a three-dimensional inverse heat conduction problem”, 4th International Conference on Modelling, Identification and Control (IEEE Conference Publications), June 24-26, 2012, Wuhan- China, pp. 1242 - 1248.
  5. Hasanov A., 2012 “Identification of spacewise and time dependent source terms in 1D heat conduction equation from temperature measurement at a final time”, International Journal of Heat and Mass Transfer, 55, (2012), pp. 2069 - 2080.
  6. Huang C. H., Wang S. P., 1999 “A three-dimensional inverse heat conduction problem in estimating surface heat flux by conjugate gradient method”, International Journal of Heat and Mass Transfer, 42, (1999), pp. 3387 - 3403.
  7. Huang C. H., Chen W. C., 2000 “A three-dimensional inverse forced convection problem in estimating surface heat flux by conjugate gradient method”, International Journal of Heat and Mass Transfer, 43, (2000), pp. 317 - 3181.
  8. Khachfe R. A, Jarny Y., 2000 “Numerical solution of 2-D nonlinear inverse heat conduction problems using finite-element techniques”. Numerical Heat Transfer - Part B, vol 37- 1 (2000) 45-67
  9. Ling L., Yamamoto M., Hon Y. C, Takeuchi T., 2006 “Identification of source locations in two-dimensional heat equations”, Inverse Problems, 22, (2006), pp. 1289 - 1305.
  10. Martinez-Gomez L.A., Weitzenfeld A., 2004 “Real Time Vision System for a Small Size League Team”, Proceedings of the 1st IEEE Latin American Robotics Symposium - LARS, Mexico city, October 28 - 29, 2004 , Mexico.
  11. Perez L., Autrique L., Gillet M., 2008 “Implementation of a conjugate gradient algorithm for thermal diffusivity identification in a moving boundaries system”, Journal of physics, Conference series, Vol. 135, doi:10.1088/1742-6596/135/1/012082.
  12. Rouquette S., Autrique L., Chaussavoine C., Thomas L., 2007 “Identification of influence factors in a thermal model a plasma assisted chemical vapour deposition process”, Inverse Problems in Science and Engineering, Vol. 15, n° 5, pp. 489-515.
  13. Silva Neto A. J, Özisik M. N., 1994 “The estimation of space and time dependent strength of a volumetric heat source in a one-dimensional plate”, International Journal of Heat and Mass Transfer, 37, (1994), pp. 909 - 915.
  14. Tarantola A., 2005 “Inverse Problem Theory and Methods for Model Parameter Estimation”, (2005), Society for Industrial and Applied Mathematics (SIAM) publication.
  15. Ucinski D, 2005 “Optimal Measurement Methods for Distributed Parameter System Identification”, CRC Press, 2005.
  16. Wang C., Wang H., Soh W. Y. C., Wang H., 2001 “A Real Time Vision System for Robotic Soccer”, 4th Asian Conference on Robotics and its application, Singapour.
  17. Yang C. Y., 2006 “The determination of two moving heat sources in two-dimensional inverse heat problem”, Applied Mathematical Modelling, 30, (2006), pp. 278 - 292.
  18. Yi Z. H, Murio D. A., 2002 “Source term identification in 1D IHCP”, Computers and Mathematics with Applications, 47, (2002), pp. 1921 - 1933.
  19. Zickler S., Laue T., Birbach O., Wongphati M., Veloso M., 2009 “SSL-Vision: The Shared Vision System for the RoboCup Small Size League”, RoboCup 2009: Robot Soccer World Cup XIII, 425-436, Springer.
Download


Paper Citation


in Harvard Style

Vergnaud A., Lucidarme P., Autrique L. and Perez L. (2013). Adaptive Deployment of a Mobile Sensors Network to Optimize the Monitoring of a Phenomenon Governed by Partial Differential Equations . In Doctoral Consortium - Doctoral Consortium, (ICINCO 2013) ISBN Not Available, pages 8-14. DOI: 10.5220/0004637400080014


in Bibtex Style

@conference{doctoral consortium13,
author={Alban Vergnaud and Philippe Lucidarme and Laurent Autrique and Laetitia Perez},
title={Adaptive Deployment of a Mobile Sensors Network to Optimize the Monitoring of a Phenomenon Governed by Partial Differential Equations},
booktitle={Doctoral Consortium - Doctoral Consortium, (ICINCO 2013)},
year={2013},
pages={8-14},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004637400080014},
isbn={Not Available},
}


in EndNote Style

TY - CONF
JO - Doctoral Consortium - Doctoral Consortium, (ICINCO 2013)
TI - Adaptive Deployment of a Mobile Sensors Network to Optimize the Monitoring of a Phenomenon Governed by Partial Differential Equations
SN - Not Available
AU - Vergnaud A.
AU - Lucidarme P.
AU - Autrique L.
AU - Perez L.
PY - 2013
SP - 8
EP - 14
DO - 10.5220/0004637400080014