Automated Classification of Haematopoietic Compartments in the Human Bone Marrow using Reservoir Computing

Philipp Kainz, Harald Burgsteiner, Helmut Ahammer, Martin Asslaber


Background. Histomorphometry of haematopoiesis in the human bone marrow is a mandatory element in lots of daily diagnosis processes in pathology. The determination of relative quantities of the haematopoietic compartments is currently performed visually by the individual pathologist using conventional microscopy. Hence, intra- and inter-observer variability is unavoidable, but standardized quantitative methods are not available yet. Standard image processing methods are limited when it comes to automated classification of objects within a histological image but methods and paradigms of Computational Intelligence (CI) have the potential to overcome these barriers. Specific Aims. The proposed PhD project is intended to develop and implement a machine learning system for the automated quantification of objects in histological images. The major tasks are the development of a classifier based on the reservoir computing paradigm for automated pattern recognition and classification as well as its prototypical software implementation. Research Methods. Histological sections of human bone marrow are stained using histological standard techniques. Experienced pathologists will label the haematopoietic compartments in a software system and the data sets for the classifier are generated. We are going to train the algorithm on the labeled image patches in order to distinguish different cell classes. Expected Results. This classification system will contribute to the progress in digital pathology in terms of decreasing the overall intra- and inter-observer variability in the diagnostics of human bone marrow specimen. Furthermore, we emphasize the potential of CI algorithms in medical image analysis and pattern recognition.


  1. Abbott, L. (2008). Theoretical neuroscience rising. Neuron, 60:490-495.
  2. Abeel, T., Van de Peer, Y., and Saeys, Y. (2009). JavaML: A Machine Learning Library. Journal of Machine Learning Research, 10:931-934.
  3. Aizenberg, I., Aizenberg, N., Hiltner, J., Moraga, C., and Meyer zu Bexten, E. (2001). Cellular neural networks and computational intelligence in medical image processing. Image and Vision Computing, 19:177-183.
  4. Al-Janabi, S., Huisman, A., and Van Diest, P. J. (2011). Digital pathology: current status and future perspectives. Histopathology.
  5. Bain, B. J., Clark, D. M., Lampert, I. A., and Koch, S. (2000). Knochenmarkpathologie. Blackwell, Berlin.
  6. Bishop, C. M. (1995). Neural Networks for Pattern Recognition. Oxford University Press, Inc., New York, NY, USA.
  7. Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer, New York.
  8. Burgsteiner, H. (2006). Imitation learning with spiking neural networks and real-world devices. Engineering Applications of Artificial Intelligence, 19(7):741-752.
  9. Burgsteiner, H., Kröll, M., Leopold, A., and Steinbauer, G. (2007). Movement prediction from real-world images using a liquid state machine. Applied Intelligence, 26(2):99-109.
  10. Chua, L. O. (1998). CNN: A paradigm for Complexity, volume 31 of World Scientific Series on Nonlinear Science (Series A). Signapore: World Scientific Publishing Company.
  11. Cooper, L. A. D., Carter, A. B., Farris, A. B., Wang, F., Kong, J., Gutman, D. A., Widener, P., Pan, T. C., Cholleti, S. R., Sharma, A., Kurc, T. M., Brat, D. J., and Saltz, J. H. (2012). Digital Pathology: DataIntensive Frontier in Medical Imaging. Proceedings of the IEEE, 100(4, SI):991-1003.
  12. Cover, T. M. (1965). Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition. IEEE Transactions on Electronic Computers, EC-14(3):326-334.
  13. Cross, S. S., Dennis, T., and Start, R. D. (2002). Telepathology: current status and future prospects in diagnostic histopathology. Histopathology, 41(2):91-109.
  14. , Dullin, C., Missbach-Guentner, J., Vogel, W. F., Grabbe, E., and Alves, F. (2007). Semi-automatic classification of skeletal morphology in genetically altered mice using flat-panel volume computed tomography. PLoS Genetics, 3(7):e118.
  15. Engelbrecht, A. P. (2007). Computational Intelligence: An Introduction. Wiley Publishing, 2nd edition.
  16. Fogel, G. B. (2008). Computational intelligence approaches for pattern discovery in biological systems. Briefings in Bioinformatics, 9(4):307-316.
  17. Foss, F. A., Milkins, S., and McGregor, A. H. (2012). Inter-observer variability in the histological assessment of colorectal polyps detected through the NHS bowel cancer screening programme. Histopathology, 61(1):47-52.
  18. Gonzalez, R. C. and Woods, R. E. (2008). Digital image processing. Prentice Hall International, Upper Saddle River, N.J.
  19. Goodman, E. and Ventura, D. (2005). Time invariance and liquid state machines. In Proceedings of the Joint Conference on Information Sciences, pages 420-423.
  20. Gurcan, M. N., Boucheron, L. E., Can, A., Madabhushi, A., Rajpoot, N. M., and Yener, B. (2009). Histopathological image analysis: a review. IEEE Reviews in Biomedical Engineering, 2:147-171.
  21. Hamilton, P. W., Wang, Y., and Mccullough, S. J. (2012). Virtual microscopy and digital pathology in training and education. APMIS, 120(4):305-315.
  22. Hassanien, A.-E., Abraham, A., Kacprzyk, J., and Peters, J. (2008). Computational intelligence in multimedia processing: Foundation and trends. In Hassanien, A.- E., Abraham, A., and Kacprzyk, J., editors, Computational Intelligence in Multimedia Processing: Recent Advances, volume 96 of Studies in Computational Intelligence, pages 3-49. Springer, Berlin, Heidelberg.
  23. Haykin, S. (1999). Neural Networks - A Comprehensive Foundation. Pearson, Cambridge, London.
  24. Hazan, H. and Manevitz, L. M. (2010). The liquid state machine is not robust to problems in its components but topological constraints can restore robustness. In Proceedings of the International Conference on Fuzzy Computation and 2nd International Conference on Neural Computation, pages 258-264.
  25. Hourdakis, E. and Trahanias, P. (2011). Improving the classification performance of liquid state machines based on the separation property. In Iliadis, L. and Jayne, C., editors, Engineering Applications of Neural Networks, volume 363 of IFIP Advances in Information and Communication Technology, pages 52-62. Springer Berlin Heidelberg.
  26. Huang, C.-H., Veillard, A., Roux, L., Loménie, N., and Racoceanu, D. (2011). Time-efficient sparse analysis of histopathological whole slide images. Computerized Medical Imaging and Graphics, 35(7-8):579- 591.
  27. Kayser, K. (2011). Quantification of virtual slides: Approaches to analysis of content-based image information. Journal of Pathology Informatics, 2:2.
  28. Kayser, K., Borkenfeld, S., and Kayser, G. (2012). How to introduce virtual microscopy (VM) in routine diagnostic pathology: constraints, ideas, and solutions. Analytical Cellular Patholology, 35(1):3-10.
  29. Kayser, K., Gö rtler, J., Bogovac, M., Bogovac, A., Goldmann, T., Vollmer, E., and Kayser, G. (2009). AI (artificial intelligence) in histopathology - from image analysis to automated diagnosis. Folia Histochemica et Cytobiologica, 47(3):355-361.
  30. Kayser, K., Gortler, J., Goldmann, T., Vollmer, E., Hufnagl, P., and Kayser, G. (2008a). Image standards in tissuebased diagnosis (diagnostic surgical pathology). Diagnostic Pathology, 3:17.
  31. Kayser, K., Hoshang, S. A., Metze, K., Goldmann, T., Vollmer, E., Radziszowski, D., Kosjerina, Z., Mireskandari, M., and Kayser, G. (2008b). Textureand object-related automated information analysis in histological still images of various organs. Analytical and Quantitative Cytology and Histology, 30(6):323- 335.
  32. Kuntimad, G. and Ranganath, H. (1999). Perfect image segmentation using pulse coupled neural networks. IEEE Transactions on Neural Networks, 10(3):591-598.
  33. Lin, W., Xiao, J., and Micheli-Tzanakou, E. (1998). A computational intelligence system for cell classification. In Proceedings of the 1998 IEEE international conference on information technology applications in biomedicine, pages 105-109.
  34. Lu, K.-C. and Yang, D.-L. (2009). Image processing and image mining using decision trees. Journal of Information Science and Engineering, 25:989-1003.
  35. Lukos?evic?ius, M. and Jaeger, H. (2009). Reservoir computing approaches to recurrent neural network training. Computer Science Review, 3(3):127 - 149.
  36. Lukos?evic?ius, M., Jaeger, H., and Schrauwen, B. (2012). Reservoir computing trends. KI - Künstliche Intelligenz, pages 1-7.
  37. Maass, W. (2010). Motivation, theory, and applications of liquid state machines. In Cooper, B. and Sorbi, A., editors, Computability in Context: Computation and Logic in the Real World, pages 275-296. Imperial College Press, London.
  38. Maass, W., Legenstein, R., and Markram, H. (2002a). A new approach towards vision suggested by biologically realistic neural microcircuit models. In Buelthoff, H. H., Lee, S. W., Poggio, T. A., and Wallraven, C., editors, Biologically Motivated Computer Vision. Proc. of the Second International Workshop, BMCV 2002, Tuebingen, Germany, November 22-24, 2002, volume 2525 of Lecture Notes in Computer Science, pages 282-293. Springer (Berlin).
  39. Maass, W. and Markram, H. (2004). On the computational power of circuits of spiking neurons. Journal of Computer and System Sciences, 69:593-616.
  40. Maass, W., Natschläger, T., and Markram, H. (2002b). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11):2531-2560.
  41. Mitra, S. and Pal, S. K. (2005). Fuzzy sets in pattern recognition and machine intelligence. Fuzzy Sets and Systems, 156(3):381-386.
  42. Molnar, B., Berczi, L., Diczhazy, C., Tagscherer, A., Varga, S. V., Szende, B., and Tulassay, Z. (2003). Digital slide and virtual microscopy based routine and telepathology evaluation of routine gastrointestinal biopsy specimens. Journal of Clinical Pathology, 56(6):433-438.
  43. Mori, I., Nunobiki, O., Ozaki, T., Taniguchi, E., and Kakudo, K. (2008). Issues for application of virtual microscopy to cytoscreening, perspectives based on questionnaire to japanese cytotechnologists. Diagnostic Pathology, 3(Suppl 1):S15.
  44. Norton, D. and Ventura, D. (2006). Preparing more effective liquid state machines using Hebbian learning. In Proceedings of the IEEE International Joint Conference on Neural Networks IJCNN'06, pages 8359-8364.
  45. Norton, D. and Ventura, D. (2010). Improving liquid state machines through iterative refinement of the reservoir. Neurocomputing, 73(16-18):2893-2904.
  46. Ranganath, H. and Kuntimad, G. (1999). Object detection using pulse coupled neural networks. IEEE Transactions on Neural Networks, 10(3):615 -620.
  47. Revell, P. A. (1983). Histomorphometry of bone. Journal of Clinical Pathology, 36:1323-1331.
  48. Riber-Hansen, R., Vainer, B., and Steiniche, T. (2012). Digital image analysis: a review of reproducibility, stability and basic requirements for optimal results. APMIS, 120(4):276-289.
  49. Schaberg, E. S., Jordan, W. H., and Kuyatt, B. L. (1992). Artificial intelligence in automated classification of rat vaginal smear cells. Analytical and Quantitative Cytology and Histology, 14(6):446-450.
  50. Schrauwen, B. and Van Campenhout, J. (2003). BSA, a fast and accurate spike train encoding scheme. In IEEE International Joint Conference on Neural Networks (IJCNN), pages 2825-2830. IEEE.
  51. Schrauwen, B., Verstraeten, D., and Van Campenhout, J. (2007). An overview of reservoir computing: theory, applications and implementations. In Proceedings of the 15th European Symposium on Artificial Neural Networks, pages 471-482.
  52. Shivhare, S. and Shrivastava, R. (2012). Automatic Bone Marrow White Blood Cell Classfication using Morphological Granulometric Feature of Nucleus. International Journal of Scientific & Technology Research, 1(4):125-131.
  53. Sj öströ m, P. J., Frydel, B. R., and Wahlberg, L. U. (1999). Artificial neural network-aided image analysis system for cell counting. Cytometry, 36(1):18-26.
  54. Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3:109-118.
  55. Steil, J. J. (2004). Backpropagation-decorrelation: online recurrent learning with O(N) complexity. In Proceedings of 2004 IEEE International Joint Conference on Neural Networks, volume 2, pages 843-848.
  56. Trocchi, P., Ursin, G., Kuss, O., Ruschke, K., SchmidtPokrzywniak, A., Holzhausen, H.-J., L öning, T., Thomssen, C., Böcker, W., Kluttig, A., and Stang, A. (2012). Mammographic density and inter-observer variability of pathologic evaluation of core biopsies among women with mammographic abnormalities. BMC Cancer, 12:554.
  57. Tuceryan, M. and Jain, A. K. (1998). Texture analysis. In Chen, C. H., Pau, L. F., and P., W. P. S., editors, The Handbook of Pattern Recognition and Computer Vision, chapter 2.1, pages 207-248. World Scientific Publishing Co., 2nd edition.
  58. Verstraeten, D., Schrauwen, B., D'Haene, M., and Stroobandt, D. (2007). An experimental unification of reservoir computing methods. Neural Networks, 20(3):391 - 403.
  59. Verstraeten, D., Schrauwen, B., and Stroobandt, D. (2006). Reservoir-based techniques for speech recognition. In Proceedings of the World Conference on Computational Intelligence, pages 1050-1053.
  60. Verstraeten, D., Schrauwen, B., Stroobandt, D., and Van Campenhout, J. (2005). Isolated word recognition with the liquid state machine: a case study. Information Processing Letters - Special issue on applications of spiking neural networks, 95(6):521-528.
  61. Wang, C., Li, S., He, K., Lin, Z., and Jiang, C. (2010). Automatic image segmentation using pulse coupled neural network and independent component analysis. In 2010 International Conference on Machine Vision and Human-Machine Interface (MVHI), pages 261 -263, Kaifeng, China.
  62. Yao, X. (1999). Evolving Artificial Neural Networks. Proceedings of the IEEE, 87(9):1423-1447.
  63. Zhang, Y. and Wu, L. (2011). Crop classification by forward neural network with adaptive chaotic particle swarm optimization. Sensors, 11:4721-4743.
  64. Zheng, Q., Milthorpe, B. K., and Jones, A. S. (2004). Direct neural network application for automated cell recognition. Cytometry Part A, 57A(1):1-9.

Paper Citation

in Harvard Style

Kainz P., Burgsteiner H., Ahammer H. and Asslaber M. (2013). Automated Classification of Haematopoietic Compartments in the Human Bone Marrow using Reservoir Computing . In Doctoral Consortium - Doctoral Consortium, (IJCCI 2013) ISBN Not Available, pages 8-18

in Bibtex Style

@conference{doctoral consortium13,
author={Philipp Kainz and Harald Burgsteiner and Helmut Ahammer and Martin Asslaber},
title={Automated Classification of Haematopoietic Compartments in the Human Bone Marrow using Reservoir Computing},
booktitle={Doctoral Consortium - Doctoral Consortium, (IJCCI 2013)},
isbn={Not Available},

in EndNote Style

JO - Doctoral Consortium - Doctoral Consortium, (IJCCI 2013)
TI - Automated Classification of Haematopoietic Compartments in the Human Bone Marrow using Reservoir Computing
SN - Not Available
AU - Kainz P.
AU - Burgsteiner H.
AU - Ahammer H.
AU - Asslaber M.
PY - 2013
SP - 8
EP - 18
DO -