Error Augmented Robotic Rehabilitation of the Upper Limb - A Review

Aris C. Alexoulis-Chrysovergis, Andrew Weightman, Emma Hodson-Tole, Frederik J. A. Deconinck

Abstract

Objective: To collect and assess the available evidence for the efficacy of error augmentation in upper limb robotic rehabilitation. Methods: A systematic literature search up to May 2013 was conducted in one citation index, the Web of Knowledge, and in two individual databases: PubMed and Scopus, for publications that utilized error augmented feedback as practice modality in robotic rehabilitation of the upper limb. Results: The systematic search returned 12 studies that utilized error augmented feedback in trials to unimpaired and impaired individuals suffering from stroke, multiple sclerosis and primary dystonia. One additional study utilizing viscous force fields was included as the authors paid special merit to the effects of the field in directions where the error was amplified. In the studies that met the inclusion criteria two different types of error augmented feedback was used that is, haptic and visual feedback which were used either separately as rehabilitation modalities or in conjunction with each other. All studies but one report positive outcome regardless of the type(s) of feedback utilized. Conclusions: Error augmentation in upper limb robotic rehabilitation is a relatively new area of study, counting almost nine years after the first relevant publication and rather understudied. Error augmentation in upper limb robotic rehabilitation should be further researched in more practice-intensive studies and with larger trial groups. The potential of error augmented upper limb rehabilitation should also be explored with conditions other than the ones described in this review.

References

  1. Abdollahi, F., Rozario, S. V., Kenyon, R. V., Patton, J. L., Case, E., Kovic, M. & Listenberger, M., 2011. Arm control recovery enhanced by error augmentation. IEEE Int Conf Rehabil Robot, 2011, 5975504.
  2. Casellato, C., Pedrocchi, A., Zorzi, G., Rizzi, G., Ferrigno, G. & Nardocci, N., 2012. Error-enhancing robot therapy to induce motor control improvement in childhood onset primary dystonia. Journal of Neuroengineering and Rehabilitation, 9.
  3. Cesqui, B., Aliboni, S., Mazzoleni, S., Carrozza, M. C., Posteraro, F., Micera, S. & Ieee, 2008. On the Use of Divergent Force Fields in Robot-Mediated Neurorehabilitation. 2008 2nd Ieee Ras & Embs International Conference on Biomedical Robotics and Biomechatronics. 942-949.
  4. Dobkin, B. H., 2004. Strategies for stroke rehabilitation. Lancet Neurology, 3, 528-536.
  5. Fasoli, S. E., Fragala-Pinkham, M., Hughes, R., Hogan, N., Krebs, H. I. & Stein, J., 2008. Upper limb robotic therapy for children with hemiplegia. Am J Phys Med Rehabil, 87, 929-36.
  6. Fluet, G. G., Qiu, Q., Kelly, D., Parikh, H. D., Ramirez, D., Saleh, S. & Adamovich, S. V., 2010. Interfacing a haptic robotic system with complex virtual environments to treat impaired upper extremity motor function in children with cerebral palsy. Dev Neurorehabil, 13, 335-45.
  7. French, B., Thomas, L. H., Leathley, M. J., Sutton, C. J., Mcadam, J., Forster, A., Langhorne, P., Price, C. I. M., Walker, A. & Watkins, C. L., 2007. Repetitive task training for improving functional ability after stroke. Cochrane Database of Systematic Reviews.
  8. Huang, V. S. & Krakauer, J. W., 2009. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil, 6, 5.
  9. Imms, C., 2008. Children with cerebral palsy participate: A review of the literature. Disability and Rehabilitation, 30, 1867-1884.
  10. Jackson, A. E., Holt, R. J., Culmer, P. R., Makower, S. G., Levesley, M. C., Richardson, R.C., Cozens, J. A., Williams, M. M. & Bhakta, B. B., 2007. Dual robot system for upper limb rehabilitation after stroke: The design process. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 221, 845-857.
  11. Johnson, M. J., 2006. Recent trends in robot-assisted therapy environments to improve real-life functional performance after stroke. Journal of Neuroengineering and Rehabilitation, 3.
  12. Kluzik, J., Fetters, L. & Coryell, J., 1990. Quantification of control: a preliminary study of effects of neurodevelopmental treatment on reaching in children with spastic Cerebral Palsy. Physical Therapy, 70, 65- 76.
  13. Maher, C. A., Williams, M. T., Olds, T. & Lane, A. E., 2007. Physical and sedentary activity in adolescents with cerebral palsy. Developmental Medicine and Child Neurology, 49, 450-457.
  14. Marchal-Crespo, L. & Reinkensmeyer, D. J., 2009. Review of control strategies for robotic movement training after neurologic injury. Journal of Neuroengineering and Rehabilitation, 6.
  15. Matsuoka, Y., Brewer, B. R. & Klatzky, R. L., 2007. Using visual feedback distortion to alter coordinated pinching patterns for robotic rehabilitation. J Neuroeng Rehabil, 4, 17.
  16. Molier, B. I., Prange, G. B., Krabben, T., Stienen, A. H. A., Van Der Kooij, H., Buurke, J. H., Jannink, M. J. A. & Hermens, H. J., 2011. Effect of position feedback during task-oriented upper-limb training after stroke: Five-case pilot study. Journal of Rehabilitation Research and Development, 48, 1109-1117.
  17. Montagner, A., Frisoli, A., Borelli, L., Procopio, C., Bergamasco, M., Carboncini, M. C. & Rossi, B., Year. A pilot clinical study on robotic assisted rehabilitation in VR with an arm exoskeleton deviceed.eds. Virtual Rehabilitation, 2007, 57-64.
  18. Morris, S. L., Dodd, K. J. & Morris, M. E., 2004. Outcomes of progressive resistance strength training following stroke: a systematic review. Clin Rehabil, 18, 27-39.
  19. Norouzi-Gheidari, N., Archambault, P. S. & Fung, J., 2012. Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. Journal of Rehabilitation Research and Development, 49, 479-96.
  20. Patton, J. L., Kovic, M. & Mussa-Ivaldi, F. A., 2006a. Custom-designed haptic training for restoring reaching ability to individuals with poststroke hemiparesis. J Rehabil Res Dev, 43, 643-56.
  21. Patton, J. L. & Mussa-Ivaldi, F. A., 2004. Robot-assisted adaptive training: custom force fields for teaching movement patterns. IEEE Trans Biomed Eng, 51, 636-46.
  22. Patton, J. L., Stoykov, M. E., Kovic, M. & Mussa-Ivaldi, F. A., 2006b. Evaluation of robotic training forces that either enhance or reduce error in chronic hemiparetic stroke survivors. Experimental Brain Research, 168, 368-383.
  23. Prange, G. B., Jannink, M. J. A., Groothuis-Oudshoorn, C. G. M., Hermens, H.J. & Ijzerman, M. J., 2006. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabilitation Research and Development, 43, 171-183.
  24. Reinkensmeyer, D. J., 2009. Robotic Assistance for Upper Extremity Training after Stroke. In A. Gaggioli, E. A. Keshner, P. L. Weiss & G. Riva (eds.) Advanced Technologies in Rehabilitation: Empowering Cognitive, Physical, Social and Communicative Skills through Virtual Reality, Robots, Wearable Systems and Brain-Computer Interfaces. 25-39.
  25. Reinkensmeyer, D. J., Emken, J. L. & Cramer, S. C., 2004. Robotics, motor learning, and neurologic recovery. Annual Review of Biomedical Engineering, 6, 497-525.
  26. Rozario, S. V., Housman, S., Kovic, M., Kenyon, R. V. & Patton, J. L., 2009. Therapist-mediated post-stroke rehabilitation using haptic/graphic error augmentation. Conf Proc IEEE Eng Med Biol Soc, 2009, 1151-6.
  27. Scott, S. H. & Dukelow, S. P., 2011. Potential of robots as next-generation technology for clinical assessment of neurological disorders and upper-limb therapy. Journal of Rehabilitation Research and Development, 48, 335-353.
  28. Shirzad, N., Van Der Loos, H. F. M. & Ieee, 2012. Error Amplification to Promote Motor Learning and Motivation in Therapy Robotics. 2012 Annual International Conference of the Ieee Engineering in Medicine and Biology Society. 3907-3910.
  29. Sivan, M., O'connor, R. J., Makower, S., Levesley, M. & Bhakta, B., 2011. Systematic review of outcome measures used in the evaluation of robot-assisted upper limb exercise in stroke. J Rehabil Med, 43, 181- 9.
  30. Squeri, V., Vergaro, E., Brichetto, G., Casadio, M., Morasso, P. G., Solaro, C. & Sanguineti, V., Year. Adaptive robot training in the rehabilitation of incoordination in Multiple Sclerosis: A pilot studyed.eds., Noordwijk, 364-370.
  31. Squeri, V., Vergaro, E., Brichetto, G., Casadio, M., Morasso, P. G., Solaro, C., Sanguineti, V. & Ieee, 2007b. Adaptive robot training in the rehabilitation of incoordination in Multiple Sclerosis: a pilot study. 2007 Ieee 10th International Conference on Rehabilitation Robotics, Vols 1 and 2. 364-370.
  32. Teulings, H. L., Contrerasvidal, J. L., Stelmach, G. E. & Adler, C. H., 1997. Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146, 159-170.
  33. Vergaro, E., Squeri, V., Brichetto, G., Casadio, M., Morasso, P., Solaro, C. & Sanguineti, V., 2010. Adaptive robot training for the treatment of incoordination in Multiple Sclerosis. J Neuroeng Rehabil, 7, 37.
  34. Wang, F., Barkana, D. E. & Sarkar, N., 2010. Impact of visual error augmentation when integrated with assistas-needed training method in robot-assisted rehabilitation. IEEE Trans Neural Syst Rehabil Eng, 18, 571-9.
  35. Wei, Y., Bajaj, P., Scheidt, R., Patton, J. & Ieee, 2005. Visual error augmentation for enhancing motor learning and rehabilitative relearning. 2005 Ieee 9th International Conference on Rehabilitation Robotics. New York: Ieee, 505-510.
  36. Weightman, A., Preston, N., Levesley, M., Holt, R., MonWilliams, M., Clarke, M., Cozens, A. J. & Bhakta, B., 2011. Home based computer-assisted upper limb exercise for young children with cerebral palsy: a feasibility study investigating impact on motor control and functional outcome. Journal of Rehabilitation Medicine, 43, 359-363.
  37. Wolpert, D. M., Ghahramani, Z. & Jordan, M. I., 1995. An internal model for sensorimotor integration. Science, 269, 1880-1882.
  38. Wu, C. Y., Trombly, C. A., Lin, K. C. & Tickle-Degnen, L., 2000. A kinematic study of contextual effects on reaching performance in persons with and without stroke: Influences of object availability. Archives of Physical Medicine and Rehabilitation, 81, 95-101.
Download


Paper Citation


in Harvard Style

C. Alexoulis-Chrysovergis A., Weightman A., Hodson-Tole E. and J. A. Deconinck F. (2013). Error Augmented Robotic Rehabilitation of the Upper Limb - A Review . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: SensoryFusion, (NEUROTECHNIX 2013) ISBN 978-989-8565-80-8, pages 167-178. DOI: 10.5220/0004654101670178


in Bibtex Style

@conference{sensoryfusion13,
author={Aris C. Alexoulis-Chrysovergis and Andrew Weightman and Emma Hodson-Tole and Frederik J. A. Deconinck},
title={Error Augmented Robotic Rehabilitation of the Upper Limb - A Review},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: SensoryFusion, (NEUROTECHNIX 2013)},
year={2013},
pages={167-178},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004654101670178},
isbn={978-989-8565-80-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: SensoryFusion, (NEUROTECHNIX 2013)
TI - Error Augmented Robotic Rehabilitation of the Upper Limb - A Review
SN - 978-989-8565-80-8
AU - C. Alexoulis-Chrysovergis A.
AU - Weightman A.
AU - Hodson-Tole E.
AU - J. A. Deconinck F.
PY - 2013
SP - 167
EP - 178
DO - 10.5220/0004654101670178