A Computational Model of Grid Cells based on Dendritic Self-organized Learning

Jochen Kerdels, Gabriele Peters

Abstract

In this paper we present a new computational model for grid cells. These cells are neurons in the entorhinal cortex of the hippocampal region that encode allocentric spatial information. They possess a peculiar, triangular firing pattern that spans the entire environment with a virtual lattice. We show that such a firing pattern can emerge from a dendritic, self-organized learning process. A key aspect of the proposed model is the hypothesis that the dendritic tree of a grid cell can behave like a sparse self organizing map that tries to cover its input space as best as possible. We argue, that the encoding scheme used by grid cells is possibly not limited to the description of spatial information and may represent a general principle on how complex information is encoded in higher level brain areas like the hippocampal region.

References

  1. Barry, C., Ginzberg, L. L., OKeefe, J., and Burgess, N. (2012). Grid cell firing patterns signal environmental novelty by expansion. Proceedings of the National Academy of Sciences, 109(43):17687-17692.
  2. Burgess, N., Barry, C., and O'Keefe, J. (2007). An oscillatory interference model of grid cell firing. Hippocampus, 17(9):801-812.
  3. Derdikman, D., Whitlock, J. R., Tsao, A., Fyhn, M., Hafting, T., Moser, M.-B., and Moser, E. I. (2009). Fragmentation of grid cell maps in a multicompartment environment. Nat Neurosci, 12(10):1325-1332.
  4. Fiete, I. R., Burak, Y., and Brookings, T. (2008). What grid cells convey about rat location. The Journal of Neuroscience, 28(27):6858-6871.
  5. Fritzke, B. (1995). A growing neural gas network learns topologies. In Advances in Neural Information Processing Systems 7, pages 625-632. MIT Press.
  6. Fuhs, M. C. and Touretzky, D. S. (2006). A spin glass model of path integration in rat medial entorhinal cortex. The Journal of Neuroscience, 26(16):4266-4276.
  7. Fyhn, M., Hafting, T., Treves, A., Moser, M.-B., and Moser, E. I. (2007). Hippocampal remapping and grid realignment in entorhinal cortex. Nature, 446(7132):190-194.
  8. Fyhn, M., Molden, S., Witter, M. P., Moser, E. I., and Moser, M.-B. (2004). Spatial representation in the entorhinal cortex. Science, 305(5688):1258-1264.
  9. Giocomo, L., Moser, M.-B., and Moser, E. (2011). Computational models of grid cells. Neuron, 71(4):589 - 603.
  10. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. I. (2005). Microstructure of a spatial map in the entorhinal cortex. Nature, 436(7052):801-806.
  11. Kropff, E. and Treves, A. (2008). The emergence of grid cells: Intelligent design or just adaptation? Hippocampus, 18(12):1256-1269.
  12. Langston, R. F., Ainge, J. A., Couey, J. J., Canto, C. B., Bjerknes, T. L., Witter, M. P., Moser, E. I., and Moser, M.-B. (2010). Development of the spatial representation system in the rat. Science, 328(5985):1576-1580.
  13. McNaughton, B. L., Battaglia, F. P., Jensen, O., Moser, E. I., and Moser, M.-B. (2006). Path integration and the neural basis of the 'cognitive map'. Nat Rev Neurosci, 7(8):663-678.
  14. Mhatre, H., Gorchetchnikov, A., and Grossberg, S. (2012). Grid cell hexagonal patterns formed by fast selforganized learning within entorhinal cortex. Hippocampus, 22(2):320-334.
  15. Monaco, J. D. and Abbott, L. F. (2011). Modular realignment of entorhinal grid cell activity as a basis for hippocampal remapping. The Journal of Neuroscience, 31(25):9414-9425.
  16. Moser, E. I., Kropff, E., and Moser, M.-B. (2008). Place cells, grid cells, and the brain's spatial representation system. ANNUAL REVIEW OF NEUROSCIENCE, 31:69-89.
  17. Navratilova, Z., Giocomo, L. M., Fellous, J.-M., Hasselmo, M. E., and McNaughton, B. L. (2012). Phase precession and variable spatial scaling in a periodic attractor map model of medial entorhinal grid cells with realistic after-spike dynamics. Hippocampus, 22(4):772- 789.
  18. O'Keefe, J. (1976). Place units in the hippocampus of the freely moving rat. Experimental Neurology, 51(1):78 - 109.
  19. O'Keefe, J. and Dostrovsky, J. (1971). The hippocampus as a spatial map. preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1):171 - 175.
  20. Sargolini, F., Fyhn, M., Hafting, T., McNaughton, B. L., Witter, M. P., Moser, M.-B., and Moser, E. I. (2006). Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science, 312(5774):758-762.
  21. Sjstrm, P. J., Rancz, E. A., Roth, A., and Husser, M. (2008). Dendritic excitability and synaptic plasticity. Physiological Reviews, 88(2):769-840.
  22. Solstad, T., Boccara, C. N., Kropff, E., Moser, M.-B., and Moser, E. I. (2008). Representation of geometric borders in the entorhinal cortex. Science, 322(5909):1865-1868.
  23. Squire, L., Bloom, F., Spitzer, N., Squire, L., Berg, D., du Lac, S., and Ghosh, A. (2008). Fundamental Neuroscience. Fundamental Neuroscience Series. Elsevier Science.
  24. Stensola, H., Stensola, T., Solstad, T., Froland, K., Moser, M.-B., and Moser, E. I. (2012). The entorhinal grid map is discretized. Nature, 492(7427):72-78.
  25. Taube, J. (2009). Head direction cells. Scholarpedia, 4(12):1787.
  26. Taube, J., Muller, R., and Ranck, J. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. i. description and quantitative analysis. The Journal of Neuroscience, 10(2):420-435.
  27. van Strien, N. M., Cappaert, N. L. M., and Witter, M. P. (2009). The anatomy of memory: an interactive overview of the parahippocampal-hippocampal network. Nat Rev Neurosci, 10(4):272-282.
  28. Wills, T. J., Cacucci, F., Burgess, N., and O'Keefe, J. (2010). Development of the hippocampal cognitive map in preweanling rats. Science, 328(5985):1573- 1576.
  29. Witter, M. P., Wouterlood, F. G., Naber, P. A., and van Haeften, T. (2000). Anatomical organization of the parahippocampal-hippocampal network. Annals of the New York Academy of Sciences, 911(1):1-24.
  30. Yartsev, M. M., Witter, M. P., and Ulanovsky, N. (2011). Grid cells without theta oscillations in the entorhinal cortex of bats. Nature, 479(7371):103-107.
  31. Zilli, E. A. and Hasselmo, M. E. (2010). Coupled noisy spiking neurons as velocity-controlled oscillators in a model of grid cell spatial firing. The Journal of Neuroscience, 30(41):13850-13860.
Download


Paper Citation


in Harvard Style

Kerdels J. and Peters G. (2013). A Computational Model of Grid Cells based on Dendritic Self-organized Learning . In Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2013) ISBN 978-989-8565-77-8, pages 420-429. DOI: 10.5220/0004658804200429


in Bibtex Style

@conference{ncta13,
author={Jochen Kerdels and Gabriele Peters},
title={A Computational Model of Grid Cells based on Dendritic Self-organized Learning},
booktitle={Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2013)},
year={2013},
pages={420-429},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004658804200429},
isbn={978-989-8565-77-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: NCTA, (IJCCI 2013)
TI - A Computational Model of Grid Cells based on Dendritic Self-organized Learning
SN - 978-989-8565-77-8
AU - Kerdels J.
AU - Peters G.
PY - 2013
SP - 420
EP - 429
DO - 10.5220/0004658804200429