Carryover Effect after Functional Electrical Stimulation Treatment - Pilot Study for a Quantitative Approach

Marta Gandolla, Alessandra Pedrocchi, Simona Ferrante, Eleonora Guanziroli, Nick S. Ward, Franco Molteni


Functional Electrical Stimulation (FES) has been reported to be an effective treatment for neurological patients, e.g. post-stroke patients. Besides beneficial effects at muscles themselves, a re-learning process named carryover effect has been observed in some patients. This work aims at defining a quantitative method to assess the carryover effect in a group of patients, starting from a set of outcome measures that are specific to the considered treatment. Fifteen post-stroke chronic subjects have been recruited for 20 half an hour sessions of FES-based treatment for Foot Drop correction during ambulation. Gait velocity, a spatial asymmetry index, a temporal asymmetry index, endurance velocity and tibialis anterior activation index during gait have been selected as outcome measures. After the analysis performed with the proposed method based on principal component analysis, 50% of patients presented the carryover effect. The proposed approach is a quantitative method that can be applied to any set of outcome measures of interest. The results could inform further studies aimed at identifying the carryover effect mechanism of action.


  1. Abdi, H., Williams, L.J., 2010. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics 2: 433-459.
  2. Ambrosini, E., Ferrante, S., Pedrocchi, A., Ferrigno, G., Molteni, F., 2011. Cycling Induced by Electrical Stimulation Improves Motor Recovery in Postacute Hemiparetic Patients: a Randomized Controlled Trial. Stroke 42:1068-1073.
  3. Ashworth, B., 1964. Preliminary trial of carisoprodol in multiple sclerosis. The Practitioner 192: 540-542.
  4. Burridge, J. H., Taylor, P. N., Hagan, S. A., Swain, I. D., 1997. The effects of common peroneal stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. Clin Rehabil. 11:201-210.
  5. Burridge, J. H., Wood, D. E., Taylor, P. N., McLellan D. L., 2001. Indices to describe different muscle activation patterns, identified during treadmill walking, in people with spastic drop-foot. Medical Engineering and Physics 23: 427-434.
  6. Davis, R. B., Ounpuu, S., Tyburski, D. J., Gage J. R., 1991. A gait analysis data collection and reduction technique. Hum. Mov. Sci. 10: 575-587.
  7. Eng, J. J., Dawson, A. S., Chu, K. S., 2004. Submaximal exercise in persons with stroke: test-retest reliability and concurrent validity with maximal oxygen consumption. Arch Phys Med Rehabil 85: 113-118.
  8. Everaert, D. G., Thompson, A. K., Chong, S. L., Stein, R. B., 2010. Does functional electrical stimulation for foot drop strengthen corticospinal connections? Neurorehabil Neural Repair. 24: 168-77.
  9. Fulk, G. D, Echternach, J. L., 2008. Test-retest reliability and minimal detectable change of gait speed in individuals undergoing rehabilitation after stroke. J Neurol Phys Ther 32: 8-13.
  10. Ilgin, D., Ozalevli, S., Kilinc, O., Sevinc, C., Cimrin, A. H., Ucan, E.S., 2011. Gait speed as a functional capacity indicator in patients with chronic obstructive pulmonary disease. Annals of Thoracic Medicine 6: 141-146.
  11. Kesar, T. M., Perumal, R., Jancosko, A., Reisman, D. S., Rudolph, K. S., Higginson, J. S., Binder-Macleod, S. A., 2010. Novel Patterns of Functional Electrical Stimulation Have an Immediate Effect on Dorsiflexor Muscle Function During Gait for People Poststroke. Physical Therapy 90: 55-66.
  12. Kesar, T. M., Binder-Macleod, S. A., Hicks, G. E., Reisman, D. S., 2011. Minimal detectable change for gait variables collected during treadmill walking in individuals post-stroke. Gait Posture 33: 314-317.
  13. Kottink, A. I., Oostendorp, L. J., Buurke, J. H., Nene, A.V., Hermens, H.J., IJzerman, M.J., 2004. The orthotic effect of functional electrical stimulation on the improvement of walking in stroke patients with a dropped foot: a systematic review. Artif Organs 28:577-586.
  14. Liberson, W. T., Holmquest, H. J., Scot, D., Dow, M., 1961. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil. 42:101-105.
  15. Lin, P., Yang, Y., Cheng, S., Wang, R., 2006. The Relation Between Ankle Impairments and Gait Velocity and Symmetry in People With Stroke. Arch Phys Med Rehabil 87: 562-568.
  16. Medical Research Council. Aids to the examination of the peripheral nervous system, Memorandum no. 45. Her Majesty's Stationery Office, London, 1981.
  17. Merletti, R., Andina, A., Galante, M., Furlan, I., 1979. Clinical experience of electronic peroneal stimulators in 50 hemiparetic patients. Scand J Rehabil Med. 11:111-121.
  18. Olney, S. J., Richards, C.,1996. Hemiparetic gait following stroke, part I: characteristics. Gait Posture 4:136 -148.
  19. Perry, J., Garrett, M., Gronley, J.K., Mulroy, S.J., 1995. Classification of Walking Handicap in the Stroke Population. Stroke 26: 982-989.
  20. Pomeroy, V. M., King, L., Pollock, A., Baily-Hallam, A., Langhorne, P., 2006. Electrostimulation for promoting recovery of movement or functional ability after stroke. Cochrane Database Syst Rev. CD003241.
  21. Richards, C. L., Malouin, F., Dean, C., 1999. Gait in stroke: assessment and rehabilitation. Clin Geriatr Med. 15: 833-855.
  22. Ring, H., Treger, I., Gruendlinger, L., Hausdorff, J.M., 2009. Neuroprosthesis for Footdrop Compared with an Ankle-Foot Orthosis: Effects on Postural Control during Walking. Journal of Stroke and Cerebrovascular Diseases 18: 41-47.
  23. Rushton, D. N., 2003. Functional Electrical Stimulation and rehabilitation - an hypothesis. Med Eng Phys 25: 75-78.
  24. Sabut, S. K., Sikdar, C., Mondal, R., Kumar, R., Mahadevappa, M., 2010. Restoration of gait and motor recovery by functional electrical stimulation therapy in persons with stroke. Disabil Rehabil. 32: 1594-603.
  25. Sheffler, L.R., Chae, J., 2007. Neuromuscular electrical stimulation in neurorehabilitation. Muscle Nerve 35:562-90.
  26. Schuhfried, O., Crevenna, R., Fialka-Moser, V., Paternostro-Sluga, T., 2012. Non-invasive neuromuscular electrical stimulation in patients with central nervous system lesions: an educational review. J Rehabil Med 44: 99-105.
  27. Schutte, L. M., Narayanan, U., Stout, J. L., Selber, P., Gage, J. R., Schwartz, M. H. An index for quantifying deviations from normal gait. Gait and Posture 11:25- 31.
  28. Vonschroeder, H. P., Coutts R. D., Lyden, P. D., Billings, E., Nickel, V.L., 1995. Gait Parameters Following Stroke - a Practical Assessment. Journal of Rehabilitation Research and Development 32 : 25-31.
  29. Waters, R. L., McNeal, D. R., Faloon, W., Clifford, B., 1985. Functional electrical stimulation of the peroneal nerve for hemiplegia: long-term clinical follow up. J Bone Joint Surg 67A:792-93.

Paper Citation

in Harvard Style

Gandolla M., Pedrocchi A., Ferrante S., Guanziroli E., Ward N. and Molteni F. (2013). Carryover Effect after Functional Electrical Stimulation Treatment - Pilot Study for a Quantitative Approach . In Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: SSCN, (IJCCI 2013) ISBN 978-989-8565-77-8, pages 561-567. DOI: 10.5220/0004659205610567

in Bibtex Style

author={Marta Gandolla and Alessandra Pedrocchi and Simona Ferrante and Eleonora Guanziroli and Nick S. Ward and Franco Molteni},
title={Carryover Effect after Functional Electrical Stimulation Treatment - Pilot Study for a Quantitative Approach},
booktitle={Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: SSCN, (IJCCI 2013)},

in EndNote Style

JO - Proceedings of the 5th International Joint Conference on Computational Intelligence - Volume 1: SSCN, (IJCCI 2013)
TI - Carryover Effect after Functional Electrical Stimulation Treatment - Pilot Study for a Quantitative Approach
SN - 978-989-8565-77-8
AU - Gandolla M.
AU - Pedrocchi A.
AU - Ferrante S.
AU - Guanziroli E.
AU - Ward N.
AU - Molteni F.
PY - 2013
SP - 561
EP - 567
DO - 10.5220/0004659205610567