Multi Channel Surface EMG - Detection and Conditioning

M. Gazzoni, U. Barone

Abstract

The electromyogram is a compound signal comprising the electrical activity of the motor units activated asynchronously during voluntary muscle contractions. The temporal and spatial evolution of EMG can be sampled by surface electrodes. The basic principles and concepts about sEMG signal conditioning, spatial filtering, and spatial sampling are introduced and discussed.

References

  1. R. R. Harrison; “A Versatile Integrated Circuit for the Acquisition of Biopotentials,” In Custom Integrated Circuits Conference, 2007. CICC 7807. IEEE, pp 115- 122, September 2007.
  2. Bernhard Fuchs, Sven Vogel, Dietmar Schroeder; “Universal application specific integrated circuit for bioelectric data acquisition,” Medical Engineering & Physics, vol. 24, no. 10, pp 695-701, December 2002.
  3. N. Van Helleputte, J.M. Tomasik,W. Galjan, A. Mora Sanchez, D. Schroeder, W.H. Krautschneider, R. Puers; “A flexible system-on-chip (SoC) for biomedical signal acquisition and processing,” Sensors and Actuators A: Physical, vol. 142, no.1, pp 361- 368, March 2008.
  4. Chua-Chin Wang, Chi-Chun Huang, Jian-Sing Liou, Kuan-Wen Fang; “A 140-dB CMRR Low-noise Instrumentation Amplifier for Neural Signal Sensing,” In Circuits and Systems, 2006. APCCAS 2006. IEEE Asia Pacific Conference on, pp 696-699, December 2006.
  5. R. R. Harrison, C. Charles; “A low-power low-noise CMOS amplifier for neural recording applications,” Solid-State Circuits, IEEE Journal of, vol. 38, no. 6, pp 958- 965, June 2003.
  6. T. Denison, K. Consoer, W. Santa, A.T. Avestruz, J. Cooley, A. Kelly; “A 2µW 100nV /vHz ChopperStabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials,” Solid-State Circuits, IEEE Journal of, vol. 42, no. 12, pp 2934- 2945, December 2007.
  7. T. Denison, K. Consoer, A. Kelly, A. Hachenburg, and W. Santa; “A 2.2µW 94nV /vHz, Chopper-Stabilized Instrumentation Amplifier for EEG Detection in Chronic Implants,” In Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, pp 162-594, February 2007.
  8. R. Rieger, M. Schuettler, D. Pal, C. Clarke, P. Langlois, J. Taylor, and N. Donaldson; “Very Low-Noise ENG Amplifier System Using CMOS Technology,” Neural Systems and Rehabilitation Engineering, IEEE Transactions on, vol.14, no.4, pp 427- 437, December 2006.
  9. Long Yan, Jerald Yoo, Binhee Kim, Hoi-Jun Yoo; “A 0.5µVrms 12µW patch type fabric sensor for wearable body sensor network,” In Solid-State Circuits Conference, 2009. A-SSCC 2009. IEEE Asian, pp 105-108, November 2009.
  10. Hermens H., B. Freriks, R. Merletti, D. Stegeman, J. Blok, G. Rau, C. (1999). Disselhorst-Klug, G. Hägg, European recommendations for surface electromyography, ISBN 90-75452-15-2, Roessingh Research and Development, Enschede, NL.
  11. Broman H., Bilotto G. and De Luca C.(1985). A note on the non-invasive estimation of muscle fiber conduction velocity. IEEE Trans. BME; 32:341-343
  12. Disselhorst-Klug C., Silny J., Rau G.(1997). Improvement of spatial resolution in surface-EMG: a theoretical and experimental comparison of different spatial filters. IEEE Trans. Biomed. Eng., vol. 44, pp. 567-574.
  13. Farina D., Cescon C., and Merletti R.(2002a). “Influence of anatomical, physical and detection system parameters on surface EMG”, Biol. Cybern., vol. 86, pp. 445-56.
  14. Fuglevand AJ, Winter DA, Patla AE, Stashuk D. (1992). Detection of motor unit action potentials with surface electrodes: influence of electrode size and spacing. Biol Cybern. 67(2):143-53.
  15. Reucher H, Rau G, Silny J. (1987). Spatial filtering of noninvasive multielectrode EMG: Part I-Introduction to measuring technique and applications. IEEE Trans Biomed Eng., 34(2):98-105
  16. Reucher H, Silny J, Rau G. (1987). Spatial filtering of noninvasive multielectrode EMG: Part II-Filter performance in theory and modeling. IEEE Trans Biomed Eng., 34(2):106-13
  17. Roeleveld K, Stegeman DF, Vingerhoets HM, Van Oosterom A. (1997a). Motor unit potential contribution to surface electromyography. Acta Physiol Scand. ,160(2):175-83.
  18. Masuda T., Myano H., Sadoyama T. (1985). The position of innervatoin zones in the biceps brachii investigated by surface electromyography, IEEE Trans. BME 32: 36-42.
  19. Jensen C., Vasseljen O., Westgaard R. (1993). The influence of electrode position on bipolar surface electromyogram recordings of the upper trapezius muscle, Eur. J of Applied Physiol. 67:266-273.
  20. Lateva Z., Dimitrova N., Dimitrov G. (1993). Effect of recording position along a muscle fiber on surface potential power spectrum, J. Electrom. and Kines. 3:195-204.
  21. Roy S., De Luca C., Schneider J. (1986) Effects of electrode location on myoelectric conduction velocity and median frequency estimates, J. Appl. Physiol. 61;1510-1517.
  22. Koh TJ, Grabiner MD. (1993). Evaluation of methods to minimize cross talk in surface electromyography. J Biomech. 26 Suppl 1:151-7.
  23. Winter D. A., Fuglevand AJ, Archer SE., Crosstalk in surface electromyography: Theoretical and practical estimates. J Electromyogr Kinesiol. 1994;4(1):15-26.
  24. van Vugt J.P., van Dijk J.G. (2001). A convenient method to reduce crosstalk in surface EMG. Clin. Neurophysiol., vol. 112, pp. 583-92.
  25. Dimitrova N.A., Dimitrov G.V., Nikitin O.A.(2002). “Neither high-pass filtering nor mathematical differentiation of the EMG signals can considerably reduce cross-talk”, Journ. Electromyogr. Kinesiol, (4):235-46.
  26. Farina D., Merletti R., Indino B., Nazzaro M., and Pozzo M.(2002b). Cross-talk between knee extensor muscles. Experimental and model results. Muscle Nerve, vol. 26, pp. 681-95.
  27. Roeleveld K, Stegeman DF, Vingerhoets HM, Van Oosterom A. (1997b). The motor unit potential distribution over the skin surface and its use in estimating the motor unit location. Acta Physiol Scand., 161(4):465-72.
  28. Zwarts MJ, Stegeman DF. (2003). Multichannel surface EMG: basic aspects and clinical utility. Muscle Nerve., 28(1):1-17.
Download


Paper Citation


in Harvard Style

Gazzoni M. and Barone U. (2013). Multi Channel Surface EMG - Detection and Conditioning . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: DeNeuro, (NEUROTECHNIX 2013) ISBN 978-989-8565-80-8, pages 119-125. DOI: 10.5220/0004663701190125


in Bibtex Style

@conference{deneuro13,
author={M. Gazzoni and U. Barone},
title={Multi Channel Surface EMG - Detection and Conditioning},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: DeNeuro, (NEUROTECHNIX 2013)},
year={2013},
pages={119-125},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004663701190125},
isbn={978-989-8565-80-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: DeNeuro, (NEUROTECHNIX 2013)
TI - Multi Channel Surface EMG - Detection and Conditioning
SN - 978-989-8565-80-8
AU - Gazzoni M.
AU - Barone U.
PY - 2013
SP - 119
EP - 125
DO - 10.5220/0004663701190125