A Light-weight Exoskeleton for Hip Flexion-extension Assistance

Francesco Giovacchini, Matteo Fantozzi, Mariele Peroni, Matteo Moisè, Marco Cempini, Mario Cortese, Dirk Lefeber, Maria Chiara Carrozza, Nicola Vitiello


Wearable robots can represent a way to rehabilitate and/or assist people affected by gait disorders that are common problems associated with ageing, following orthopedic surgery or diseases like brain injuries. In order to improve their usability and effectiveness, exoskeletons aiming at assisting people affected by gait impairments should be light-weight devices and have safe and low output impedance actuators. In this paper we present a light-weight exoskeleton endowed with two series elastic actuators for hip flexion-extension assistance.


  1. Banala, S. K., Agrawal, S. K., Fattah, A. et al., 2006. Gravity-Balancing Leg Orthosis and Its Performance Evaluation, IEEE Transactions on Robotics, 22(6):1228-1239.
  2. Beyl, P., Van Damme, M., Van Ham, R., et al., 2010. Design and control of a lower limb exoskeleton for robot-assisted gait training. Applied Bionics and Biomechanics, 6(2):229 - 243.
  3. Burge, R., Dawson-Hughes, B., Solomon, D. H., et al., 2007. Incidence and Economic Burden of Osteoporosis-Related Fractures in the United States, 2005-2025. Journal of Bone and Mineral Research, 22: 465-475.
  4. Cempini, M., Giovacchini, F., Vitiello, N., et al., 2013. NEUROExos: A Powered Elbow Orthosis for PostStroke Early Neurorehabilitation. In Proceedings of 35th Annual International Conference of the IEEE EMBS, 342-345.
  5. Dollar, A., Herr, H., 2008. Lower extremity exoskeletons and active orthoses: challenges and state-of-the-art. IEEE Transactions on Robotics, 24(1):144 158.
  6. Kazerooni, H., Steger, R., 2006. The Berkeley Lower Extremity Exoskeleton. Journal of Dynamic Systems, Measurement and Control, 128(1):14-25.
  7. Pons, J. L, 2010. Rehabilitation Exoskeletal Robotics. IEEE Engineering in Medicine and Biology Magazine, 29(3): 57-63.
  8. Pratt, G., Williamson, M. M., 1995. Series elastic actuators. In Proc. IEEE Int. Conf. Intell. Robots Syst., Pittsburgh, PA, 339-406.
  9. Ronsse, R., Vitiello, N., Lenzi, T., et al., 2011. Humanrobot synchrony: flexible assistance using adaptive oscillators, IEEE Transactions on Biomedical Engineering, 58(4):1001-1012.
  10. Ronsse, R., Lenzi, T., Vitiello, N., et al., 2011. Oscillatorbased assistance of cyclical movements: model-based and model-free approaches, Medical and Biological Engineering and Computing, 49(10):1173-1185.
  11. Sawicki, G., Gordon, K., Ferris, D., 2005. Powered lower limb orthoses: applications in motor adaptation and rehabilitation. In 9th International Conference on Rehabilitation Robotics, 206-211.
  12. Snijders, A. H., van den Warrenburg, B.P., Giladi, N., et al., 2007. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol., 6(1):63-74.
  13. Stolze, H., Klebe, S., Baecker, C., 2005. Prevalence of gait disorders in hospitalized neurological patients. Mov Disord, 20(1): 89-94.
  14. Sulzer, J., Roiz, R., Peshkin, M., et al., 2009. A Highly Backdrivable, Lightweight Knee Actuator for Investigating Gait in Stroke. IEEE Transactions on Robotics, 25(3):539-548.
  15. Verghese, J., Levalley, A., Hall, C. B., et al., 2006. Epidemiology of gait disorders in community-residing older adults. J Am Geriatr Soc, 54: 255-261.
  16. Walsh, C. J., Endo, K., Herr, H., 2007. A quasi-passive Legacy Exoskeleton for load-carrying augmentation. International Journal of Humanoid Robotics, 4(3):487-506.
  17. Weinberg, B., Nikitczuk, J., Patel, S., et al., 2007. Design, Control and Human Testing of an Active Knee Rehabilitation Orthotic Device. In Proceedings of IEEE International Conference on Robotics and Automation, 4126-4133.
  18. Wilson, R. S., Schneider, J. A., Beckett, L. A., et al., 2002. Progression of gait disorder and rigidity and risk of death in older persons. Neurology, 58: 1815-1819.
  19. Winter D. A., 2009. Biomechanics and Motor Control of Human Movement, 4th ed.: Wiley.
  20. Veneman, J. F., Ekkelenkamp, R. Kruidhof, R., et al., 2006. A series elastic- and Bowden-cable-based actuation of use torque actuator in exoskeleton-type robots, Int. J. Robot. Res., vol. 25, no. 3, pp. 261-281.
  21. Vitiello, N., Lenzi, T., Roccella, S., et al., 2013. NEUROExos: A Powered Elbow Exoskeleton for Physical Rehabilitation, IEEE Transactions on Robotics, vol. 29(1): 220-235,
  22. Veneman, J. F., Kruidhof, R., Hekman, E. E. G., et al., 2007. Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(3):379-386.
  23. Zinn, M., Roth, B., Khatib, O., et al., 2004. A new actuation approach for human-friendly robot design. Int. J. Robot. Res., vol. 23,no. 4-5, pp. 379-398.

Paper Citation

in Harvard Style

Giovacchini F., Fantozzi M., Peroni M., Moisè M., Cempini M., Cortese M., Lefeber D., Carrozza M. and Vitiello N. (2013). A Light-weight Exoskeleton for Hip Flexion-extension Assistance . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: RoboAssist, (NEUROTECHNIX 2013) ISBN 978-989-8565-80-8, pages 194-198. DOI: 10.5220/0004663901940198

in Bibtex Style

author={Francesco Giovacchini and Matteo Fantozzi and Mariele Peroni and Matteo Moisè and Marco Cempini and Mario Cortese and Dirk Lefeber and Maria Chiara Carrozza and Nicola Vitiello},
title={A Light-weight Exoskeleton for Hip Flexion-extension Assistance},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: RoboAssist, (NEUROTECHNIX 2013)},

in EndNote Style

JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: RoboAssist, (NEUROTECHNIX 2013)
TI - A Light-weight Exoskeleton for Hip Flexion-extension Assistance
SN - 978-989-8565-80-8
AU - Giovacchini F.
AU - Fantozzi M.
AU - Peroni M.
AU - Moisè M.
AU - Cempini M.
AU - Cortese M.
AU - Lefeber D.
AU - Carrozza M.
AU - Vitiello N.
PY - 2013
SP - 194
EP - 198
DO - 10.5220/0004663901940198