On the Impact of Pathological Tremor Intensity on Noninvasive Characterization of Motor Unit Discharge Properties

Petra Povalej Bržan, Vojko Glaser, Simon Zelič, Juan Álvaro Gallego, Juan Pablo Romero Muñoz, Aleš Holobar

Abstract

The impact of severity of pathological tremor on surface EMG decomposition was systematically assessed on eight essential tremor patients. The inertial data and surface EMG signals were concurrently recorded from wrist extensor and flexor muscles of both patients’ arms. The inertial recordings were segmented into different tremor cycles and the tremor amplitude was assessed in each tremor cycle. Surface EMG was decomposed by Convolution Kernel Compensation (CKC) technique in order to yield individual motor unit discharge patterns in each tremor cycle. Accuracy of EMG decomposition was assessed for each identified motor unit and was largely uncorrelated with tremor amplitude. In all the patients, the percentage of EMG energy identified by decomposition and the number of identified motor units were found to be positively correlated with tremor amplitude, though the correlation was relatively weak and not always significant. The results demonstrate that the CKC decomposition not only copes with moderate and severe tremor but also improves its performance with tremor intensity.

References

  1. Benito-León, J., Louis, E. D., 2006. Essential tremor: emerging views of a common disorder. In Nature Clinical Practice Neurology 2. pp. 666-678.
  2. Christakos, C. N., Erimaki, S., Anagnostou, E., Anastasopoulos, D., 2009. Tremor-related motor unit firing in Parkinson's disease: implications for tremor genesis. In J Physiol. vol. 587. pp. 4811-4827.
  3. Das Gupta, A., 1963 Paired response of motor units during voluntary contraction in Parkinsonism. In J Neurol Neurosurg Psychiatry. vol. 26(3). pp. 265-268.
  4. Dengler, R., Wolf, W., Schubert, M., Struppler, A., 1986 Discharge pattern of single motor units in basal ganglia disorders. In Neurology. vol 36(8). pp. 1061- 1066.
  5. Deuschl, G., Lauk, M., Timmer, J., 1995. Tremor classification and tremor time series analysis. In Chaos. vol. 5. pp. 48-51.
  6. Dietz, V., Hillesheimer, W., Freund, H. J., 1974. Correlation between tremor, voluntary contraction, and firing pattern of motor units in Parkinson's disease. In J Neurol Neurosurg Psychiatry. vol. 37(8). pp. 927-937.
  7. Farina, D., Holobar, A., Merletti, R., Enoka R.M., 2010 Decoding the neural drive to muscles from the surface electromyogram. In Clin Neurophysiol. vol. 121. pp. 1616-1623.
  8. Farina, D., Negro, F., Gazzoni, M., Enoka, R.M., 2008 Detecting the unique representation of motor-unit action potentials in the surface electromyogram. In J. Neurophysiol. vol. 100. pp. 1223-1233.
  9. Gross, J., Kujala, J., Hamalainen, M., Timmermann, L., Schnitzler, A., Salmelin, R., 2001. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. In Proc. Natl. Acad. Sci. USA 98. pp. 694-699.
  10. Groznik, V. , Guid, M., Sadikov, A., Možina, M., Georgiev, D., Kragelj, V., Ribaric, S., Pirtošek, Z., Bratko, I., 2013. Elicitation of neurological knowledge with argument-based machine learning. In Artificial Intelligence in Medicine. vol. 57(2). pp. 133-44.
  11. Halliday, D. M., Rosenberg, J. R., Amjad, A. M., Breeze, P., Conway, B. A., Farmer, S. F., 1995. A framework for the analysis of mixed time series/point process data - theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. In Prog Biophys Mol Biol. vol. 64, no. 2/3, pp. 237-278.
  12. Holobar, A., Glaser, V., Gallego, J.A., Dideriksen, J.L., Farina, D., 2012. Non-invasive characterization of motor unit behaviour in pathological tremor. In J Neural Eng. vol. 9.
  13. Holobar, A., Minetto, M. A., Botter, A., Negro, F., Farina D., 2010. Experimental analysis of accuracy in the identification of motor unit spike trains from highdensity surface EMG. In IEEE trans. neural syst. rehabil. eng.vol. 18. no. 3. pp. 221-229.
  14. Holobar, A., Minetto, M. A., Farina, D., 2013. A signalbased approach for assessing the accuracy of highdensity surface EMG decomposition. Submitted to 6th International IEEE/EMBS Conference on Neural Engineering 2013.
  15. Muthuraman, M., Heute, U., Arning, K., Anwar, A.R., Elble, R., Deuschl, G., Raethjen, J., 2012. Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference?. In NeuroImage. vol. 60. pp. 1331-1339.
  16. Muthuraman, M., Hossen, A., Heute, U., Deuschl, G., Raethjen, J., 2011. A New Diagnostic Test to Distinguish Tremulous Parkinson's Disease from Advanced Essential Tremor. In Movement Disorders. vol. 26. no. 8. pp. 1548-1552.
  17. Raethjen, J., Govindan, R.B., Muthuraman, M., Kopper, F., Volkmann, J., Deuschl, G., 2009. Cortical correlates of the basic and first harmonic frequency of Parkinsonian tremor. In Clin Neurophysiol. vol. 120. pp.1866-1872.
  18. Rocon, E., Andrade, A.O., Pons, J. L., Kyberd, P., Nasuto, S. J., 2006. Empirical mode decomposition: a novel technique for the study of tremor time series. In Med. Biol. Engineering and Computing. vol. 44(7). pp. 569- 582 .
  19. Saunders-Pullman, R., Derby, C., Stanley, K., Floyd, A., Bressman, S., Lipton, R.B., Deligtisch, A., Severt, L., Yu, Q., Kurtis, M., Pullman, S.L., 2008. Validity of spiral analysis in early Parkinson's disease, In Mov Disord. vol. (4). pp. 531-537.
  20. Scheltera, B., Timmer, J., Eichler, M., 2009. Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. In Journal of Neuroscience Methods. vol. 179 (1). pp. 121-130.
  21. Wu, Z., Huang, N.E., 2009. Ensemble Empirical Mode Decomposition: a Noise-assisted Data Analysis Method. In Adv Adapt Data Anal. vol. 1. pp. 1-41.
Download


Paper Citation


in Harvard Style

Povalej Bržan P., Glaser V., Zelič S., Gallego J., Romero Muñoz J. and Holobar A. (2013). On the Impact of Pathological Tremor Intensity on Noninvasive Characterization of Motor Unit Discharge Properties . In Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: DeNeuro, (NEUROTECHNIX 2013) ISBN 978-989-8565-80-8, pages 126-132. DOI: 10.5220/0004664001260132


in Bibtex Style

@conference{deneuro13,
author={Petra Povalej Bržan and Vojko Glaser and Simon Zelič and Juan Álvaro Gallego and Juan Pablo Romero Muñoz and Aleš Holobar},
title={On the Impact of Pathological Tremor Intensity on Noninvasive Characterization of Motor Unit Discharge Properties},
booktitle={Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: DeNeuro, (NEUROTECHNIX 2013)},
year={2013},
pages={126-132},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0004664001260132},
isbn={978-989-8565-80-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the International Congress on Neurotechnology, Electronics and Informatics - Volume 1: DeNeuro, (NEUROTECHNIX 2013)
TI - On the Impact of Pathological Tremor Intensity on Noninvasive Characterization of Motor Unit Discharge Properties
SN - 978-989-8565-80-8
AU - Povalej Bržan P.
AU - Glaser V.
AU - Zelič S.
AU - Gallego J.
AU - Romero Muñoz J.
AU - Holobar A.
PY - 2013
SP - 126
EP - 132
DO - 10.5220/0004664001260132