Embedded System for ECG Biometrics

André Matos, André Lourenço, Jose Nascimento


Biometric recognition has recently emerged has an alternative solution for applications where the privacy of the information is crucial. In this paper we present an embedded biometric recognition system based on the Electrocardiographic signals (ECG). The proposed system implements a real-time state-of-the-art recognition algorithm, which extracts information from the frequency domain, on an architecture based ARM Cortex 4. Using a sensor based on a two electrodes apparatus, the system is designed to be autonomous, non-intrusive and easy to use on different scenarios. Preliminary results show the successful real-time implementation on the embedded platform enabling its usage on a myriad of applications


  1. Agrafioti, F., Gao, J., and Hatzinakos, D. (2011). Biometrics, chapter Heart Biometrics: Theory, Methods and Applications, Biometrics. InTech.
  2. Biel, L., Pettersson, O., Philipson, L., and Wide, P. (2001). ECG analysis: a new approach in human identification. Instrumentation and Measurement, IEEE Transactions on, 50(3):808-812.
  3. Godse, D. (2008). Microprocessor, Microcontroller & Applications. Technical Publications.
  4. Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., and Wiederhold, B. K. (2005). fECGg to identify individuals. Pattern Recognition, 38(1):133 - 142.
  5. Jain, A. K., Bolle, R. M., and Pankanti, S. (2005). Biometrics: Personal Identification in Networked Society. Springer.
  6. Jain, A. K., Flynn, P., and Ross, A. A. (2007). Handbook of Biometrics. Springer-Verlag New York, Inc., Secaucus, NJ, USA.
  7. Jain, A. K., Ross, A., and Prabhakar, S. (2004). An introduction to biometric recognition. IEEE Trans. Circuits Syst. Video Techn., 14(1):4-20.
  8. Odinaka, I., Lai, P.-H., Kaplan, A., O'Sullivan, J., Sirevaag, E., Kristjansson, S., Sheffield, A., and Rohrbaugh, J. (2010). Ecg biometrics: A robust short-time frequency analysis. In Information Forensics and Security (WIFS), 2010 IEEE International Workshop on, pages 1 -6.
  9. Odinaka, I., Lai, P.-H., Kaplan, A., O'Sullivan, J., Sirevaag, E., and Rohrbaugh, J. (2012). Ecg biometric recognition: A comparative analysis. Information Forensics and Security, IEEE Transactions on, 7(6):1812 -1824.
  10. Oppenheim, A. V. and Schafer, R. W. (1975). Digital Signal Processing. PrenticeHall.
  11. Ross, A. A., Nandakumar, K., and Jain, A. K. (2006). Handbook of Multibiometrics (International Series on Biometrics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.
  12. Sass, R. and Schmidt, A. G. (2010). Embedded Systems Design with Platform FPGAs: Principles and Practices. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1st edition.
  13. Silva, H., Lourenc¸o, A., Canento, F., Fred, A., and Raposo, N. (2013). ECG biometrics: Principles and applications. In Proceeding of the 6th Conference on Bio-Inspired Systems and Signal Processing (BIOSIGNALS).
  14. Silva, H., Lourenc¸o, A., Lourenc¸o, R. L., Leite, P. L., Coutinho, D., and Fred, A. L. N. (2011). Study and evaluation of a single differential sensor design based on electro-textile electrodes for ECG biometrics applications. In IEEE Sensors, pages 1764-1767.
  15. Singh, Y. and Gupta, P. (2009). Biometrics method for human identification using electrocardiogram. In Tistarelli, M. and Nixon, M., editors, Advances in Biometrics, volume 5558 of Lecture Notes in Computer Science, pages 1270-1279. Springer Berlin Heidelberg.
  16. Wang, Y., Agrafioti, F., Hatzinakos, D., and Plataniotis, K. N. (2008). Analysis of human electrocardiogram for biometric recognition. EURASIP J. Adv. Signal Process, 2008.
  17. Ye, C., Coimbra, M., and Kumar, B. (2010). Investigation of human identification using two-lead electrocardiogram (ecg) signals. In Biometrics: Theory Applications and Systems (BTAS), 2010 Fourth IEEE International Conference on, pages 1-8.
  18. Zong, W., Heldt, T., Moody, G., and Mark, R. (2003). An open-source algorithm to detect onset of arterial blood pressure pulses. In Computers in Cardiology, 2003, pages 259-262.

Paper Citation

in Harvard Style

Matos A., Lourenço A. and Nascimento J. (2013). Embedded System for ECG Biometrics . In Proceedings of the International Congress on Cardiovascular Technologies - Volume 1: CARDIOTECHNIX, ISBN 978-989-8565-78-5, pages 27-33. DOI: 10.5220/0004703300270033

in Bibtex Style

author={André Matos and André Lourenço and Jose Nascimento},
title={Embedded System for ECG Biometrics},
booktitle={Proceedings of the International Congress on Cardiovascular Technologies - Volume 1: CARDIOTECHNIX,},

in EndNote Style

JO - Proceedings of the International Congress on Cardiovascular Technologies - Volume 1: CARDIOTECHNIX,
TI - Embedded System for ECG Biometrics
SN - 978-989-8565-78-5
AU - Matos A.
AU - Lourenço A.
AU - Nascimento J.
PY - 2013
SP - 27
EP - 33
DO - 10.5220/0004703300270033